| /* |
| * Licensed to the Apache Software Foundation (ASF) under one |
| * or more contributor license agreements. See the NOTICE file |
| * distributed with this work for additional information |
| * regarding copyright ownership. The ASF licenses this file |
| * to you under the Apache License, Version 2.0 (the |
| * "License"); you may not use this file except in compliance |
| * with the License. You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, |
| * software distributed under the License is distributed on an |
| * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| * KIND, either express or implied. See the License for the |
| * specific language governing permissions and limitations |
| * under the License. |
| */ |
| |
| /*! |
| * Copyright (c) 2017 by Contributors |
| * \file quantize.cc |
| * \brief |
| */ |
| |
| #include "./quantize_v2-inl.h" |
| #if MXNET_USE_MKLDNN == 1 |
| #include "./mkldnn/mkldnn_quantize_v2-inl.h" |
| #endif |
| |
| namespace mxnet { |
| namespace op { |
| DMLC_REGISTER_PARAMETER(QuantizeV2Param); |
| |
| static bool QuantizeV2StorageType(const nnvm::NodeAttrs& attrs, const int dev_mask, |
| DispatchMode* dispatch_mode, std::vector<int>* in_attrs, |
| std::vector<int>* out_attrs) { |
| *dispatch_mode = DispatchMode::kFCompute; |
| #if MXNET_USE_MKLDNN == 1 |
| if (dev_mask == mshadow::cpu::kDevMask) { |
| *dispatch_mode = DispatchMode::kFComputeEx; |
| } |
| #endif |
| (*out_attrs)[0] = kDefaultStorage; |
| (*out_attrs)[1] = kDefaultStorage; |
| (*out_attrs)[2] = kDefaultStorage; |
| return true; |
| } |
| |
| static OpStatePtr CreateQuantizeV2State(const nnvm::NodeAttrs& attrs, Context ctx, |
| const std::vector<TShape>& in_shapes, |
| const std::vector<int>& in_types) { |
| OpStatePtr state; |
| if (ctx.dev_type == kGPU) { |
| state = OpStatePtr::Create<QuantizeV2Operator<gpu>>(attrs); |
| } else { |
| #if MXNET_USE_MKLDNN == 1 |
| state = OpStatePtr::Create<SgMKLDNNQuantizeOperator>(attrs); |
| #else |
| state = OpStatePtr::Create<QuantizeV2Operator<cpu>>(attrs); |
| #endif |
| } |
| return state; |
| } |
| |
| NNVM_REGISTER_OP(_contrib_quantize_v2) |
| .describe(R"code(Quantize a input tensor from float to `out_type`, |
| with user-specified `min_calib_range` and `max_calib_range` or the input range collected at runtime. |
| |
| Output `min_range` and `max_range` are scalar floats that specify the range for the input data. |
| |
| When out_type is `uint8`, the output is calculated using the following equation: |
| |
| `out[i] = (in[i] - min_range) * range(OUTPUT_TYPE) / (max_range - min_range) + 0.5`, |
| |
| where `range(T) = numeric_limits<T>::max() - numeric_limits<T>::min()`. |
| |
| When out_type is `int8`, the output is calculate using the following equation |
| by keep zero centered for the quantized value: |
| |
| `out[i] = sign(in[i]) * min(abs(in[i] * scale + 0.5f, quantized_range)`, |
| |
| where |
| `quantized_range = MinAbs(max(int8), min(int8))` and |
| `scale = quantized_range / MaxAbs(min_range, max_range).` |
| |
| When out_type is `auto`, the output type is automatically determined by min_calib_range if presented. |
| If min_calib_range < 0.0f, the output type will be int8, otherwise will be uint8. |
| If min_calib_range isn't presented, the output type will be int8. |
| |
| .. Note:: |
| This operator only supports forward propagation. DO NOT use it in training.)code" ADD_FILELINE) |
| .set_attr_parser(ParamParser<QuantizeV2Param>) |
| .set_num_inputs(1) |
| .set_num_outputs(3) |
| .set_attr<nnvm::FListInputNames>("FListInputNames", [](const NodeAttrs& attrs) { |
| return std::vector<std::string>{"data"}; |
| }) |
| .set_attr<mxnet::FInferShape>("FInferShape", QuantizeV2Shape) |
| .set_attr<nnvm::FInferType>("FInferType", QuantizeV2Type) |
| .set_attr<FInferStorageType>("FInferStorageType", QuantizeV2StorageType) |
| // TODO(Xinyu): a temp solution to enable GluonCV INT8 flow, |
| // will be reverted after the improvement of CachedOP is done. |
| .set_attr<nnvm::FGradient>("FGradient", MakeZeroGradNodes) |
| .set_attr<FCreateOpState>("FCreateOpState", CreateQuantizeV2State) |
| #if MXNET_USE_MKLDNN == 1 |
| .set_attr<bool>("TIsMKLDNN", true) |
| .set_attr<FStatefulComputeEx>("FStatefulComputeEx<cpu>", SgMKLDNNQuantizeForward) |
| #endif |
| .set_attr<FStatefulCompute>("FStatefulCompute<cpu>", QuantizeV2Forward<cpu>) |
| .set_attr<nnvm::FInplaceOption>("FInplaceOption", [](const NodeAttrs& attrs) { |
| return std::vector<std::pair<int, int> >{{0, 0}}; |
| }) |
| .set_attr<nnvm::FInplaceIdentity>("FInplaceIdentity", [](const NodeAttrs& attrs){ |
| return std::vector<bool>{true}; |
| }) |
| .set_attr<FNeedCalibrateInput>("FNeedCalibrateInput", [](const NodeAttrs& attrs){ |
| return std::vector<int>{0}; |
| }) |
| .set_attr<FResourceRequest>("FResourceRequest", [](const NodeAttrs& attrs) { |
| const QuantizeV2Param ¶m = nnvm::get<QuantizeV2Param>(attrs.parsed); |
| if (param.min_calib_range.has_value() && param.max_calib_range.has_value()) { |
| return std::vector<ResourceRequest>(); |
| } else { |
| return std::vector<ResourceRequest>(1, ResourceRequest::kTempSpace); |
| } |
| }) |
| .add_argument("data", "NDArray-or-Symbol", "A ndarray/symbol of type `float32`") |
| .add_arguments(QuantizeV2Param::__FIELDS__()); |
| |
| } // namespace op |
| } // namespace mxnet |