blob: 7ad7aeb7f7575200b1d6a922880c0508dfe0e9bf [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*!
* \file mkldnn_dequantize-inl.h
* \author Wenting Jiang, Xinyu Chen
* \brief
*/
#ifndef MXNET_OPERATOR_QUANTIZATION_MKLDNN_MKLDNN_DEQUANTIZE_INL_H_
#define MXNET_OPERATOR_QUANTIZATION_MKLDNN_MKLDNN_DEQUANTIZE_INL_H_
#if MXNET_USE_MKLDNN == 1
#include <algorithm>
#include <string>
#include <vector>
#include "../../nn/mkldnn/mkldnn_base-inl.h"
namespace mxnet {
namespace op {
class SgMKLDNNDequantizeOperator {
public:
explicit SgMKLDNNDequantizeOperator(const nnvm::NodeAttrs &attrs)
: param_(nnvm::get<DequantizeParam>(attrs.parsed)) {}
void Forward(const OpContext &ctx, const std::vector<NDArray> &inputs,
const std::vector<OpReqType> &req, const std::vector<NDArray> &outputs);
private:
bool initialized_{false};
DequantizeParam param_;
float cached_data_min_{0.f};
float cached_data_max_{0.f};
mkldnn::memory::desc o_desc_;
mkldnn_args_map_t args_;
std::shared_ptr<mkldnn::reorder> fwd_pd_;
};
void SgMKLDNNDequantizeOperator::Forward(const OpContext &ctx, const std::vector<NDArray> &inputs,
const std::vector<OpReqType> &req,
const std::vector<NDArray> &outputs) {
NDArray in_buffer = inputs[0];
if (inputs[0].IsView() && inputs[0].IsMKLDNNData()) in_buffer = inputs[0].Reorder2Default();
auto i_mem = in_buffer.GetMKLDNNData();
float data_min = *inputs[1].data().dptr<float>();
float data_max = *inputs[2].data().dptr<float>();
if (initialized_ && (cached_data_min_ != data_min || cached_data_max_ != data_max))
initialized_ = false;
if (!initialized_) {
cached_data_min_ = data_min;
cached_data_max_ = data_max;
float real_range = MaxAbs(cached_data_min_, cached_data_max_);
float quantized_range = 0.0;
if (inputs[0].dtype() == mshadow::kUint8) {
quantized_range = kUint8Range;
} else if (inputs[0].dtype() == mshadow::kInt8) {
quantized_range = kInt8Range;
real_range = MaxAbs(*inputs[1].data().dptr<float>(), *inputs[2].data().dptr<float>());
} else {
LOG(FATAL) << "mkldnn dequantize op only supports int8 and uint8 as output type";
}
float scale = real_range / quantized_range;
mkldnn::primitive_attr attr;
const int mask = 0;
std::vector<float> scales = {scale};
attr.set_output_scales(mask, scales);
mkldnn::engine cpu_engine = mxnet::CpuEngine::Get()->get_engine();
auto i_desc = i_mem->get_desc();
size_t i_ndim = in_buffer.shape().ndim();
if (i_ndim == 4) {
mkldnn::memory::format_tag o_fmt = mkldnn::memory::format_tag::nchw;
mkldnn::memory::dims o_dims(i_desc.data.dims, i_desc.data.dims + i_desc.data.ndims);
o_desc_ = mkldnn::memory::desc(o_dims, get_mkldnn_type<float>(), o_fmt);
} else {
o_desc_ = i_desc;
o_desc_.data.data_type = get_mkldnn_type_t<float>();
}
auto reorder_pd =
mkldnn::reorder::primitive_desc(cpu_engine, i_desc, cpu_engine, o_desc_, attr);
fwd_pd_ = std::make_shared<mkldnn::reorder>(reorder_pd);
initialized_ = true;
}
auto o_mem = CreateMKLDNNMem(outputs[0], o_desc_, req[0]);
args_[MKLDNN_ARG_FROM] = *i_mem;
args_[MKLDNN_ARG_TO] = *o_mem.second;
MKLDNNStream::Get()->RegisterPrimArgs(*fwd_pd_, args_);
CommitOutput(outputs[0], o_mem);
MKLDNNStream::Get()->Submit();
}
static void SgMKLDNNDequantizeForward(const OpStatePtr &state_ptr, const OpContext &ctx,
const std::vector<NDArray> &inputs,
const std::vector<OpReqType> &req,
const std::vector<NDArray> &outputs) {
SgMKLDNNDequantizeOperator &op = state_ptr.get_state<SgMKLDNNDequantizeOperator>();
op.Forward(ctx, inputs, req, outputs);
}
} // namespace op
} // namespace mxnet
#endif // MXNET_USE_MKLDNN == 1
#endif // MXNET_OPERATOR_QUANTIZATION_MKLDNN_MKLDNN_DEQUANTIZE_INL_H_