blob: 192584903d7b50fae07c4ed36d241d81e5ba6e2e [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*!
* \file np_matmul_op.cc
* \brief CPU Implementation of numpy-compatible matmul
*/
#include <string>
#include "np_matmul_op-inl.h"
namespace mxnet {
namespace op {
inline bool NumpyMatmulShape(const nnvm::NodeAttrs& attrs,
mxnet::ShapeVector *in_attrs,
mxnet::ShapeVector *out_attrs) {
CHECK_EQ(in_attrs->size(), 2U);
CHECK_EQ(out_attrs->size(), 1U);
const mxnet::TShape& a_shape = in_attrs->at(0);
const mxnet::TShape& b_shape = in_attrs->at(1);
const size_t a_ndim = a_shape.ndim();
const size_t b_ndim = b_shape.ndim();
if (!ndim_is_known(a_shape) || !ndim_is_known(b_shape)) {
return false;
}
CHECK_NE(a_ndim, 0)
<< "Multiplication by scalars is not allowed.\n";
CHECK_NE(b_ndim, 0)
<< "Multiplication by scalars is not allowed.\n";
if (a_ndim == 1 && b_ndim == 1) {
// case 1: both 1-D arrays, inner product of vectors
SHAPE_ASSIGN_CHECK(*in_attrs, 0, in_attrs->at(1));
SHAPE_ASSIGN_CHECK(*in_attrs, 1, in_attrs->at(0));
SHAPE_ASSIGN_CHECK(*out_attrs, 0, mxnet::TShape(0, 0));
} else if (a_ndim == 2 && b_ndim == 2) {
// case 2: both 2-D arrays, matrix multiplication
mxnet::TShape tmp_shape(2, -1);
tmp_shape[1] = b_shape[0];
SHAPE_ASSIGN_CHECK(*in_attrs, 0, tmp_shape);
tmp_shape[0] = a_shape[1];
tmp_shape[1] = -1;
SHAPE_ASSIGN_CHECK(*in_attrs, 1, tmp_shape);
tmp_shape[0] = a_shape[0];
tmp_shape[1] = b_shape[1];
SHAPE_ASSIGN_CHECK(*out_attrs, 0, tmp_shape);
} else if (b_ndim == 1) {
// case 3: If the second argument is 1-D, it is promoted to a matrix
// by appending a 1 to its dimensions.
// After matrix multiplication the appended 1 is removed.
TShape tmp_shape(a_ndim, -1);
tmp_shape[a_ndim - 1] = b_shape[0];
SHAPE_ASSIGN_CHECK(*in_attrs, 0, tmp_shape);
tmp_shape = TShape(1, -1);
tmp_shape[0] = a_shape[a_ndim - 1];
SHAPE_ASSIGN_CHECK(*in_attrs, 1, tmp_shape);
mxnet::TShape out_shape(a_ndim - 1, -1);
for (size_t i = 0; i < a_ndim - 1; ++i) {
out_shape[i] = a_shape[i];
}
SHAPE_ASSIGN_CHECK(*out_attrs, 0, out_shape);
} else if (a_ndim == 1) {
// Case 4: If the first argument is 1-D, it is promoted to a matrix
// by prepending a 1 to its dimensions.
// After matrix multiplication the prepended 1 is removed.
TShape tmp_shape(b_ndim, -1);
tmp_shape[b_ndim - 2] = a_shape[0];
SHAPE_ASSIGN_CHECK(*in_attrs, 1, tmp_shape);
tmp_shape = TShape(1, -1);
tmp_shape[0] = b_shape[b_ndim - 2];
SHAPE_ASSIGN_CHECK(*in_attrs, 0, tmp_shape);
mxnet::TShape out_shape(b_ndim - 1, -1);
for (size_t i = 0; i < b_ndim - 2; ++i) {
out_shape[i] = b_shape[i];
}
out_shape[b_ndim - 2] = b_shape[b_ndim - 1];
SHAPE_ASSIGN_CHECK(*out_attrs, 0, out_shape);
} else {
// case 5: If either argument is N-D, N > 2, it is treated as a stack of matrices
// residing in the last two indexes and broadcast accordingly.
TShape tmp_shape(a_ndim, -1);
tmp_shape[a_ndim - 1] = b_shape[b_ndim - 2];
SHAPE_ASSIGN_CHECK(*in_attrs, 0, tmp_shape);
tmp_shape = TShape(b_ndim, -1);
tmp_shape[b_ndim - 2] = a_shape[a_ndim - 1];
SHAPE_ASSIGN_CHECK(*in_attrs, 1, tmp_shape);
size_t ndim = std::max(a_ndim, b_ndim);
mxnet::TShape out_shape(ndim, -1);
out_shape[ndim - 1] = b_shape[b_ndim - 1];
out_shape[ndim - 2] = a_shape[a_ndim - 2];
for (int p = ndim - 3, pa = a_ndim - 3, pb = b_ndim - 3;
p >= 0; --p, --pa, --pb) {
if (pa >= 0 && pb >= 0) {
if (a_shape[pa] == 1) {
out_shape[p] = b_shape[pb];
} else if (b_shape[pb] == 1) {
out_shape[p] = a_shape[pa];
} else {
CHECK_EQ(a_shape[pa], b_shape[pb])
<< "Could not be broadcast.\n";
out_shape[p] = b_shape[pb];
}
} else if (pa >= 0) {
out_shape[p] = a_shape[pa];
} else if (pb >= 0) {
out_shape[p] = b_shape[pb];
}
}
SHAPE_ASSIGN_CHECK(*out_attrs, 0, out_shape);
}
return shape_is_known(*in_attrs) && shape_is_known(*out_attrs);
}
NNVM_REGISTER_OP(_npi_matmul)
.describe(R"doc()doc" ADD_FILELINE)
.set_num_inputs(2U)
.set_num_outputs(1U)
.set_attr<nnvm::FListInputNames>("FListInputNames",
[](const NodeAttrs& attrs) {
return std::vector<std::string>{"a", "b"};
})
.set_attr<nnvm::FListOutputNames>("FListOutputNames",
[](const NodeAttrs& attrs) {
return std::vector<std::string>{"out"};
})
.set_attr<mxnet::FInferShape>("FInferShape", NumpyMatmulShape)
.set_attr<nnvm::FInferType>("FInferType", ElemwiseType<2, 1>)
.set_attr<THasDeterministicOutput>("THasDeterministicOutput", true)
.set_attr<FCompute>("FCompute<cpu>", NumpyMatmulForward<cpu>)
.set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseIn{"_backward_np_matmul"})
.set_attr<FResourceRequest>("FResourceRequest",
[](const NodeAttrs& attrs) {
return std::vector<ResourceRequest>{ResourceRequest::kTempSpace};
})
.add_argument("a", "NDArray-or-Symbol", "First input")
.add_argument("b", "NDArray-or-Symbol", "Second input");
NNVM_REGISTER_OP(_backward_np_matmul)
.set_num_inputs(3U)
.set_num_outputs(2U)
.set_attr<nnvm::TIsBackward>("TIsBackward", true)
.set_attr<FResourceRequest>("FResourceRequest",
[](const NodeAttrs& attrs) {
return std::vector<ResourceRequest>{ResourceRequest::kTempSpace};
})
.set_attr<FCompute>("FCompute<cpu>", NumpyMatmulBackward<cpu>);
} // namespace op
} // namespace mxnet