| /* |
| * Licensed to the Apache Software Foundation (ASF) under one |
| * or more contributor license agreements. See the NOTICE file |
| * distributed with this work for additional information |
| * regarding copyright ownership. The ASF licenses this file |
| * to you under the Apache License, Version 2.0 (the |
| * "License"); you may not use this file except in compliance |
| * with the License. You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, |
| * software distributed under the License is distributed on an |
| * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| * KIND, either express or implied. See the License for the |
| * specific language governing permissions and limitations |
| * under the License. |
| */ |
| |
| /*! |
| * Copyright (c) 2019 by Contributors |
| * \file np_init_op.cc |
| * \brief CPU Implementation of numpy init op |
| */ |
| |
| #include "../tensor/init_op.h" |
| #include "../tensor/elemwise_unary_op.h" |
| #include "./np_init_op.h" |
| |
| namespace mxnet { |
| namespace op { |
| |
| |
| DMLC_REGISTER_PARAMETER(NumpyEyeParam); |
| DMLC_REGISTER_PARAMETER(IndicesOpParam); |
| DMLC_REGISTER_PARAMETER(LogspaceParam); |
| DMLC_REGISTER_PARAMETER(FullLikeOpParam); |
| DMLC_REGISTER_PARAMETER(AtleastNDParam); |
| |
| inline bool NumpyIndicesShape(const nnvm::NodeAttrs& attrs, |
| mxnet::ShapeVector* in_shapes, |
| mxnet::ShapeVector* out_shapes) { |
| const IndicesOpParam& param = nnvm::get<IndicesOpParam>(attrs.parsed); |
| CHECK_EQ(in_shapes->size(), 0U); |
| CHECK_EQ(out_shapes->size(), 1U); |
| CHECK_GE(param.dimensions.ndim(), 0) |
| << "_npi_indices dimensions the number of dim must not be less than 0"; |
| mxnet::TShape param_dim = param.dimensions; |
| if (!shape_is_known(param_dim)) return false; |
| CHECK_LT(param_dim.Size(), INT32_MAX) << "ValueError: np.indices does not support large" |
| << " input tensors (containing >= 2^31 elements)."; |
| const int indim = param.dimensions.ndim(); |
| mxnet::TShape ret(indim + 1, -1); |
| ret[0] = indim; |
| for (int i = 1; i < indim + 1; ++i) { |
| ret[i] = param_dim[i-1]; |
| } |
| SHAPE_ASSIGN_CHECK(*out_shapes, 0, ret); |
| return shape_is_known(out_shapes->at(0)); |
| } |
| |
| inline bool NumpyIndicesType(const nnvm::NodeAttrs& attrs, |
| std::vector<int>* in_attrs, |
| std::vector<int>* out_attrs) { |
| const IndicesOpParam& param = nnvm::get<IndicesOpParam>(attrs.parsed); |
| CHECK_EQ(in_attrs->size(), 0U); |
| CHECK_EQ(out_attrs->size(), 1U); |
| TYPE_ASSIGN_CHECK(*out_attrs, 0, param.dtype == -1 ? mshadow::kInt64 : param.dtype); |
| return true; |
| } |
| |
| inline bool LogspaceShape(const nnvm::NodeAttrs& attrs, |
| mxnet::ShapeVector *in_attrs, |
| mxnet::ShapeVector *out_attrs) { |
| const LogspaceParam& param = nnvm::get<LogspaceParam>(attrs.parsed); |
| CHECK_EQ(in_attrs->size(), 0U); |
| CHECK_EQ(out_attrs->size(), 1U); |
| CHECK_GE(param.num, 0) |
| << "Number of sequence should be non-negative, received " << param.num; |
| SHAPE_ASSIGN_CHECK(*out_attrs, 0, mxnet::TShape({static_cast<nnvm::dim_t>(param.num)})); |
| return true; |
| } |
| |
| NNVM_REGISTER_OP(_npi_zeros) |
| .set_num_inputs(0) |
| .set_num_outputs(1) |
| .set_attr_parser(ParamParser<InitOpParam>) |
| .set_attr<mxnet::FInferShape>("FInferShape", InitShape<InitOpParam>) |
| .set_attr<nnvm::FInferType>("FInferType", InitNumpyType<InitOpParam>) |
| .set_attr<FInferStorageType>("FInferStorageType", InitStorageType<InitOpParam, true, true>) |
| .set_attr<FCompute>("FCompute<cpu>", FillCompute<cpu, 0>) |
| .add_arguments(InitOpParam::__FIELDS__()); |
| |
| NNVM_REGISTER_OP(_npi_ones) |
| .describe("Return a new array of given shape, type, and context, filled with ones.") |
| .set_num_inputs(0) |
| .set_num_outputs(1) |
| .set_attr_parser(ParamParser<InitOpParam>) |
| .set_attr<mxnet::FInferShape>("FInferShape", InitShape<InitOpParam>) |
| .set_attr<nnvm::FInferType>("FInferType", InitNumpyType<InitOpParam>) |
| .set_attr<FCompute>("FCompute<cpu>", FillCompute<cpu, 1>) |
| .add_arguments(InitOpParam::__FIELDS__()); |
| |
| NNVM_REGISTER_OP(_npi_identity) |
| .describe("Return a new identity array of given shape, type, and context.") |
| .set_num_inputs(0) |
| .set_num_outputs(1) |
| .set_attr_parser(ParamParser<InitOpParam>) |
| .set_attr<mxnet::FInferShape>("FInferShape", InitShape<InitOpParam>) |
| .set_attr<nnvm::FInferType>("FInferType", InitNumpyType<InitOpParam>) |
| .set_attr<FCompute>("FCompute<cpu>", IdentityCompute<cpu>) |
| .add_arguments(InitOpParam::__FIELDS__()); |
| |
| template<int NDim> |
| inline bool AtleastNDShape(const nnvm::NodeAttrs& attrs, |
| std::vector<mxnet::TShape> *in_attrs, |
| std::vector<mxnet::TShape> *out_attrs) { |
| auto ¶m = nnvm::get<AtleastNDParam>(attrs.parsed); |
| |
| CHECK_EQ(in_attrs->size(), param.num_args); |
| CHECK_EQ(out_attrs->size(), param.num_args); |
| |
| for (int i = 0; i < param.num_args; ++i) { |
| auto &shape = in_attrs->at(i); |
| if (shape.ndim() < NDim) { |
| mxnet::TShape new_shape(NDim, 1); |
| if (NDim == 2) { |
| if (shape.ndim() == 1) { |
| new_shape[1] = shape[0]; |
| } |
| } else if (NDim == 3) { |
| if (shape.ndim() == 1) { |
| new_shape[1] = shape[0]; |
| } else if (shape.ndim() == 2) { |
| new_shape[0] = shape[0]; |
| new_shape[1] = shape[1]; |
| } |
| } |
| SHAPE_ASSIGN_CHECK(*out_attrs, i, new_shape); |
| } else { |
| SHAPE_ASSIGN_CHECK(*out_attrs, i, shape); |
| } |
| } |
| |
| return shape_is_known(*in_attrs) && shape_is_known(*out_attrs); |
| } |
| |
| #define NNVM_REGISTER_ATLEAST_ND(N) \ |
| NNVM_REGISTER_OP(_npi_atleast_##N##d) \ |
| .set_attr_parser(ParamParser<AtleastNDParam>) \ |
| .set_num_inputs( \ |
| [](const NodeAttrs& attrs) { \ |
| auto ¶m = nnvm::get<AtleastNDParam>(attrs.parsed); \ |
| return param.num_args; \ |
| }) \ |
| .set_num_outputs( \ |
| [](const NodeAttrs& attrs) { \ |
| auto ¶m = nnvm::get<AtleastNDParam>(attrs.parsed); \ |
| return param.num_args; \ |
| }) \ |
| .set_attr<std::string>("key_var_num_args", "num_args") \ |
| .set_attr<nnvm::FListInputNames>("FListInputNames", \ |
| [](const nnvm::NodeAttrs& attrs) { \ |
| int num_args = nnvm::get<AtleastNDParam>(attrs.parsed).num_args; \ |
| std::vector<std::string> ret; \ |
| ret.reserve(num_args); \ |
| for (int i = 0; i < num_args; i++) { \ |
| ret.push_back(std::string("ary") + std::to_string(i)); \ |
| } \ |
| return ret; \ |
| }) \ |
| .set_attr<nnvm::FInferType>("FInferType", ElemwiseType<-1, -1>) \ |
| .set_attr<mxnet::FInferShape>("FInferShape", AtleastNDShape<N>) \ |
| .set_attr<nnvm::FGradient>("FGradient", MakeZeroGradNodes) \ |
| .set_attr<FCompute>("FCompute<cpu>", AtleastNDCompute<cpu>) \ |
| .add_argument("arys", "NDArray-or-Symbol[]", "List of input arrays") \ |
| .add_arguments(AtleastNDParam::__FIELDS__()) \ |
| |
| NNVM_REGISTER_ATLEAST_ND(1); |
| |
| NNVM_REGISTER_ATLEAST_ND(2); |
| |
| NNVM_REGISTER_ATLEAST_ND(3); |
| |
| NNVM_REGISTER_OP(_npi_full_like) |
| .set_num_inputs(1) |
| .set_num_outputs(1) |
| .set_attr_parser(ParamParser<FullLikeOpParam>) |
| .set_attr<mxnet::FInferShape>("FInferShape", ElemwiseShape<1, 1>) |
| .set_attr<nnvm::FInferType>("FInferType", FullLikeOpType<FullLikeOpParam>) |
| .set_attr<nnvm::FIgnoreInputs>("FIgnoreInputs", |
| [](const NodeAttrs& attrs) { |
| return std::vector<uint32_t>(1, 0); |
| }) |
| .set_attr<nnvm::FListInputNames>("FListInputNames", |
| [](const NodeAttrs& attrs) { |
| return std::vector<std::string>{"a"}; |
| }) |
| .set_attr<FCompute>("FCompute<cpu>", FullLikeOpCompute<cpu>) |
| .set_attr<nnvm::FGradient>("FGradient", MakeZeroGradNodes) |
| .add_argument("a", "NDArray-or-Symbol", |
| "The shape and data-type of a define these same attributes of the returned array.") |
| .add_arguments(FullLikeOpParam::__FIELDS__()); |
| |
| NNVM_REGISTER_OP(_npi_full) |
| .describe("fill target with a scalar value") |
| .set_num_inputs(0) |
| .set_num_outputs(1) |
| .set_attr_parser(ParamParser<InitOpWithScalarParam>) |
| .set_attr<mxnet::FInferShape>("FInferShape", InitShape<InitOpWithScalarParam>) |
| .set_attr<nnvm::FInferType>("FInferType", InitNumpyType<InitOpWithScalarParam>) |
| .set_attr<FCompute>("FCompute<cpu>", InitFillWithScalarCompute<cpu>) |
| .add_arguments(InitOpWithScalarParam::__FIELDS__()); |
| |
| NNVM_REGISTER_OP(_npi_arange) |
| .set_num_inputs(0) |
| .set_num_outputs(1) |
| .set_attr_parser(RangeParamParser) |
| .set_attr<mxnet::FInferShape>("FInferShape", NumpyRangeShape) |
| .set_attr<nnvm::FInferType>("FInferType", InitNumpyType<RangeParam>) |
| .set_attr<FCompute>("FCompute<cpu>", RangeCompute<cpu, RangeParam>) |
| .add_arguments(RangeParam::__FIELDS__()); |
| |
| NNVM_REGISTER_OP(_npi_eye) |
| .describe("Return a 2-D array with ones on the diagonal and zeros elsewhere.") |
| .set_num_inputs(0) |
| .set_num_outputs(1) |
| .set_attr_parser(ParamParser<NumpyEyeParam>) |
| .set_attr<mxnet::FInferShape>("FInferShape", NumpyEyeShape) |
| .set_attr<nnvm::FInferType>("FInferType", InitNumpyType<NumpyEyeParam>) |
| .set_attr<FCompute>("FCompute<cpu>", NumpyEyeFill<cpu>) |
| .add_arguments(NumpyEyeParam::__FIELDS__()); |
| |
| NNVM_REGISTER_OP(_npi_indices) |
| .describe("Return an array representing the indices of a grid.") |
| .set_num_inputs(0) |
| .set_num_outputs(1) |
| .set_attr_parser(ParamParser<IndicesOpParam>) |
| .set_attr<mxnet::FInferShape>("FInferShape", NumpyIndicesShape) |
| .set_attr<nnvm::FInferType>("FInferType", NumpyIndicesType) |
| .set_attr<FCompute>("FCompute<cpu>", IndicesCompute<cpu>) |
| .add_arguments(IndicesOpParam::__FIELDS__()); |
| |
| NNVM_REGISTER_OP(_npi_linspace) |
| .describe("Return evenly spaced numbers over a specified interval. Similar to Numpy") |
| .set_num_inputs(0) |
| .set_num_outputs(1) |
| .set_attr_parser(ParamParser<LinspaceParam>) |
| .set_attr<mxnet::FInferShape>("FInferShape", LinspaceShape) |
| .set_attr<nnvm::FInferType>("FInferType", InitNumpyType<LinspaceParam>) |
| .set_attr<FCompute>("FCompute<cpu>", LinspaceCompute<cpu>) |
| .add_arguments(RangeParam::__FIELDS__()); |
| |
| NNVM_REGISTER_OP(_npi_logspace) |
| .describe("Return numbers spaced evenly on a log scale.") |
| .set_num_inputs(0) |
| .set_num_outputs(1) |
| .set_attr_parser(ParamParser<LogspaceParam>) |
| .set_attr<mxnet::FInferShape>("FInferShape", LogspaceShape) |
| .set_attr<nnvm::FInferType>("FInferType", InitNumpyType<LogspaceParam>) |
| .set_attr<FCompute>("FCompute<cpu>", LogspaceCompute<cpu>) |
| .add_arguments(LogspaceParam::__FIELDS__()); |
| |
| } // namespace op |
| } // namespace mxnet |