blob: ae6697c0b23e95a123230a8b935ad06ae485a604 [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*!
* Copyright (c) 2019 by Contributors
* \file np_elemwise_binary_op.cc
* \brief CPU Implementation of basic functions for elementwise numpy binary broadcast operator.
*/
#include "./np_elemwise_broadcast_op.h"
namespace mxnet {
namespace op {
DMLC_REGISTER_PARAMETER(NumpyBinaryScalarParam);
#define MXNET_OPERATOR_REGISTER_NP_BINARY_SCALAR(name) \
NNVM_REGISTER_OP(name) \
.set_num_inputs(1) \
.set_num_outputs(1) \
.set_attr_parser(ParamParser<NumpyBinaryScalarParam>) \
.set_attr<mxnet::FInferShape>("FInferShape", ElemwiseShape<1, 1>) \
.set_attr<nnvm::FInferType>("FInferType", NumpyBinaryScalarType) \
.set_attr<FResourceRequest>("FResourceRequest", \
[](const NodeAttrs& attrs) { \
return std::vector<ResourceRequest>{ResourceRequest::kTempSpace}; \
}) \
.add_argument("data", "NDArray-or-Symbol", "source input") \
.add_arguments(NumpyBinaryScalarParam::__FIELDS__())
bool NumpyBinaryMixedPrecisionType(const nnvm::NodeAttrs& attrs,
std::vector<int>* in_attrs,
std::vector<int>* out_attrs) {
CHECK_EQ(in_attrs->size(), 2U);
CHECK_EQ(out_attrs->size(), 1U);
const int ltype = in_attrs->at(0);
const int rtype = in_attrs->at(1);
if (ltype != -1 && rtype != -1 && (ltype != rtype)) {
// Only when both input types are known and not the same, we enter the mixed-precision mode
TYPE_ASSIGN_CHECK(*out_attrs, 0, common::np_binary_out_infer_type(ltype, rtype));
} else {
return ElemwiseType<2, 1>(attrs, in_attrs, out_attrs);
}
return true;
}
#define MXNET_OPERATOR_REGISTER_NP_BINARY_MIXED_PRECISION(name) \
NNVM_REGISTER_OP(name) \
.set_num_inputs(2) \
.set_num_outputs(1) \
.set_attr<nnvm::FListInputNames>("FListInputNames", \
[](const NodeAttrs& attrs) { \
return std::vector<std::string>{"lhs", "rhs"}; \
}) \
.set_attr<mxnet::FInferShape>("FInferShape", BinaryBroadcastShape) \
.set_attr<nnvm::FInferType>("FInferType", NumpyBinaryMixedPrecisionType) \
.set_attr<nnvm::FInplaceOption>("FInplaceOption", \
[](const NodeAttrs& attrs){ \
return std::vector<std::pair<int, int> >{{0, 0}, {1, 0}}; \
}) \
.set_attr<FResourceRequest>("FResourceRequest", \
[](const NodeAttrs& attrs) { \
return std::vector<ResourceRequest>{ResourceRequest::kTempSpace}; \
}) \
.add_argument("lhs", "NDArray-or-Symbol", "First input to the function") \
.add_argument("rhs", "NDArray-or-Symbol", "Second input to the function")
MXNET_OPERATOR_REGISTER_NP_BINARY_MIXED_PRECISION(_npi_add)
.set_attr<FCompute>(
"FCompute<cpu>",
NumpyBinaryBroadcastComputeWithBool<cpu, op::mshadow_op::plus, op::mshadow_op::mixed_plus,
op::mshadow_op::mixed_plus>)
.set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseIn{"_backward_npi_broadcast_add"});
NNVM_REGISTER_OP(_backward_npi_broadcast_add)
.set_num_inputs(3)
.set_num_outputs(2)
.set_attr<nnvm::TIsBackward>("TIsBackward", true)
.set_attr<nnvm::FInplaceOption>("FInplaceOption",
[](const NodeAttrs& attrs){
return std::vector<std::pair<int, int> >{{0, 0}, {0, 1}};
})
.set_attr<FResourceRequest>("FResourceRequest",
[](const NodeAttrs& attrs) {
return std::vector<ResourceRequest>{ResourceRequest::kTempSpace};
})
.set_attr<FCompute>("FCompute<cpu>", NumpyBinaryBackwardUseIn<cpu, mshadow_op::posone,
mshadow_op::posone>);
MXNET_OPERATOR_REGISTER_NP_BINARY_MIXED_PRECISION(_npi_subtract)
.set_attr<FCompute>(
"FCompute<cpu>",
NumpyBinaryBroadcastCompute<cpu, op::mshadow_op::minus, op::mshadow_op::mixed_minus,
op::mshadow_op::mixed_rminus>)
.set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseIn{"_backward_npi_broadcast_sub"});
NNVM_REGISTER_OP(_backward_npi_broadcast_sub)
.set_num_inputs(3)
.set_num_outputs(2)
.set_attr<nnvm::TIsBackward>("TIsBackward", true)
.set_attr<nnvm::FInplaceOption>("FInplaceOption",
[](const NodeAttrs& attrs){
return std::vector<std::pair<int, int> >{{0, 0}, {0, 1}};
})
.set_attr<FResourceRequest>("FResourceRequest",
[](const NodeAttrs& attrs) {
return std::vector<ResourceRequest>{ResourceRequest::kTempSpace};
})
.set_attr<FCompute>("FCompute<cpu>", NumpyBinaryBackwardUseIn<cpu, mshadow_op::posone,
mshadow_op::negone>);
MXNET_OPERATOR_REGISTER_NP_BINARY_MIXED_PRECISION(_npi_multiply)
.set_attr<FCompute>(
"FCompute<cpu>",
NumpyBinaryBroadcastComputeWithBool<cpu, op::mshadow_op::mul, op::mshadow_op::mixed_mul,
op::mshadow_op::mixed_mul>)
.set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseIn{"_backward_npi_broadcast_mul"});
NNVM_REGISTER_OP(_backward_npi_broadcast_mul)
.set_num_inputs(3)
.set_num_outputs(2)
.set_attr<nnvm::TIsBackward>("TIsBackward", true)
.set_attr<nnvm::FInplaceOption>("FInplaceOption",
[](const NodeAttrs& attrs){
return std::vector<std::pair<int, int> >{{0, 1}};
})
.set_attr<FResourceRequest>("FResourceRequest",
[](const NodeAttrs& attrs) {
return std::vector<ResourceRequest>{ResourceRequest::kTempSpace};
})
.set_attr<FCompute>("FCompute<cpu>", NumpyBinaryBackwardUseIn<cpu, mshadow_op::right,
mshadow_op::left>);
MXNET_OPERATOR_REGISTER_NP_BINARY_MIXED_PRECISION(_npi_mod)
.set_attr<FCompute>(
"FCompute<cpu>",
NumpyBinaryBroadcastCompute<cpu, op::mshadow_op::mod, op::mshadow_op::mixed_mod,
op::mshadow_op::mixed_rmod>)
.set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseIn{"_backward_npi_broadcast_mod"});
NNVM_REGISTER_OP(_backward_npi_broadcast_mod)
.set_num_inputs(3)
.set_num_outputs(2)
.set_attr<nnvm::TIsBackward>("TIsBackward", true)
.set_attr<nnvm::FInplaceOption>("FInplaceOption",
[](const NodeAttrs& attrs){
return std::vector<std::pair<int, int> >{{0, 1}};
})
.set_attr<FResourceRequest>("FResourceRequest",
[](const NodeAttrs& attrs) {
return std::vector<ResourceRequest>{ResourceRequest::kTempSpace};
})
.set_attr<FCompute>("FCompute<cpu>", NumpyBinaryBackwardUseIn<cpu, mshadow_op::mod_grad,
mshadow_op::mod_rgrad>);
MXNET_OPERATOR_REGISTER_NP_BINARY_MIXED_PRECISION(_npi_power)
.set_attr<FCompute>(
"FCompute<cpu>",
NumpyBinaryBroadcastComputeWithBool<cpu, op::mshadow_op::power, op::mshadow_op::mixed_power,
op::mshadow_op::mixed_rpower>)
.set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseIn{"_backward_npi_broadcast_power"});
NNVM_REGISTER_OP(_backward_npi_broadcast_power)
.set_num_inputs(3)
.set_num_outputs(2)
.set_attr<nnvm::TIsBackward>("TIsBackward", true)
.set_attr<nnvm::FInplaceOption>("FInplaceOption",
[](const NodeAttrs& attrs){
return std::vector<std::pair<int, int> >{{0, 1}};
})
.set_attr<FResourceRequest>("FResourceRequest",
[](const NodeAttrs& attrs) {
return std::vector<ResourceRequest>{ResourceRequest::kTempSpace};
})
.set_attr<FCompute>("FCompute<cpu>", NumpyBinaryBackwardUseIn<cpu, mshadow_op::power_grad,
mshadow_op::power_rgrad>);
MXNET_OPERATOR_REGISTER_NP_BINARY_SCALAR(_npi_add_scalar)
.set_attr<FCompute>("FCompute<cpu>", BinaryScalarOp::Compute<cpu, op::mshadow_op::plus>)
.set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseNone{"_copy"});
MXNET_OPERATOR_REGISTER_NP_BINARY_SCALAR(_npi_subtract_scalar)
.set_attr<FCompute>("FCompute<cpu>", BinaryScalarOp::Compute<cpu, op::mshadow_op::minus>)
.set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseNone{"_copy"});
MXNET_OPERATOR_REGISTER_NP_BINARY_SCALAR(_npi_rsubtract_scalar)
.set_attr<FCompute>("FCompute<cpu>", BinaryScalarOp::Compute<cpu, mshadow_op::rminus>)
.set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseNone{"negative"});
MXNET_OPERATOR_REGISTER_NP_BINARY_SCALAR(_npi_multiply_scalar)
.set_attr<FCompute>("FCompute<cpu>", BinaryScalarOp::Compute<cpu, op::mshadow_op::mul>)
.set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseNone{"_backward_mul_scalar"});
MXNET_OPERATOR_REGISTER_NP_BINARY_SCALAR(_npi_mod_scalar)
.set_attr<FCompute>("FCompute<cpu>", BinaryScalarOp::Compute<cpu, mshadow_op::mod>)
.set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseIn{"_backward_mod_scalar"});
MXNET_OPERATOR_REGISTER_NP_BINARY_SCALAR(_npi_rmod_scalar)
.set_attr<FCompute>("FCompute<cpu>", BinaryScalarOp::Compute<cpu, mshadow_op::rmod>)
.set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseIn{"_backward_rmod_scalar"});
MXNET_OPERATOR_REGISTER_NP_BINARY_SCALAR(_npi_power_scalar)
.set_attr<FCompute>("FCompute<cpu>", BinaryScalarOp::Compute<cpu, mshadow_op::power>)
.set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseIn{"_backward_power_scalar"});
MXNET_OPERATOR_REGISTER_NP_BINARY_SCALAR(_npi_rpower_scalar)
.set_attr<FCompute>("FCompute<cpu>", BinaryScalarOp::Compute<cpu, mshadow_op::rpower>)
.set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseOut{"_backward_rpower_scalar"});
} // namespace op
} // namespace mxnet