| /* |
| * Licensed to the Apache Software Foundation (ASF) under one |
| * or more contributor license agreements. See the NOTICE file |
| * distributed with this work for additional information |
| * regarding copyright ownership. The ASF licenses this file |
| * to you under the Apache License, Version 2.0 (the |
| * "License"); you may not use this file except in compliance |
| * with the License. You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, |
| * software distributed under the License is distributed on an |
| * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| * KIND, either express or implied. See the License for the |
| * specific language governing permissions and limitations |
| * under the License. |
| */ |
| |
| /*! |
| * Copyright (c) 2020 by Contributors |
| * \file np_cross.cc |
| * \brief CPU Implementation of numpy-compatible cross |
| */ |
| |
| #include "./np_cross-inl.h" |
| |
| namespace mxnet { |
| namespace op { |
| |
| inline bool NumpyCrossShape(const nnvm::NodeAttrs& attrs, |
| mxnet::ShapeVector *in_attrs, |
| mxnet::ShapeVector *out_attrs) { |
| CHECK_EQ(in_attrs->size(), 2U); |
| CHECK_EQ(out_attrs->size(), 1U); |
| const mxnet::TShape& a_shape = in_attrs->at(0); |
| const mxnet::TShape& b_shape = in_attrs->at(1); |
| if (!ndim_is_known(a_shape) || !ndim_is_known(b_shape)) { |
| return false; |
| } |
| |
| if (shape_is_known(a_shape) && shape_is_known(b_shape)) { |
| const NumpyCrossParam& param = nnvm::get<NumpyCrossParam>(attrs.parsed); |
| const int a_ndim = a_shape.ndim(); |
| const int b_ndim = b_shape.ndim(); |
| CHECK_GE(a_ndim, 1) << "Array must be at least one-dimensional"; |
| CHECK_GE(b_ndim, 1) << "Array must be at least one-dimensional"; |
| CHECK_LE(a_ndim, broadcast::MAX_DIM) |
| << "cross product support at most " << broadcast::MAX_DIM << " dimensions"; |
| CHECK_LE(b_ndim, broadcast::MAX_DIM) |
| << "cross product support at most " << broadcast::MAX_DIM << " dimensions"; |
| |
| const Tuple<int> a_moveaxis_index = GetMoveaxisIndex(param.axisa, -1, a_shape); |
| const Tuple<int> b_moveaxis_index = GetMoveaxisIndex(param.axisb, -1, b_shape); |
| const mxnet::TShape a_moveaxis_shape = GetMoveaxisShape(a_moveaxis_index, a_shape); |
| const mxnet::TShape b_moveaxis_shape = GetMoveaxisShape(b_moveaxis_index, b_shape); |
| |
| CHECK(a_moveaxis_shape[a_ndim - 1] == 2 || a_moveaxis_shape[a_ndim - 1] == 3) |
| << "incompatible dimensions for cross product and axis should have dimensions 2 or 3."; |
| CHECK(b_moveaxis_shape[b_ndim - 1] == 2 || b_moveaxis_shape[b_ndim - 1] == 3) |
| << "incompatible dimensions for cross product and axis should have dimensions 2 or 3."; |
| |
| if (a_ndim == 1 && b_ndim == 1) { |
| if (a_moveaxis_shape[a_ndim - 1] == 2 && b_moveaxis_shape[b_ndim - 1] == 2) { |
| // Both 1-D arrays with dim = 2, cross product of vectors. |
| SHAPE_ASSIGN_CHECK(*out_attrs, 0, mxnet::TShape(0, 0)); |
| } else { |
| // Both 1-D arrays with at least one dim = 3, cross product of vectors. |
| SHAPE_ASSIGN_CHECK(*out_attrs, 0, mxnet::TShape(1, 3)); |
| } |
| } else { |
| mxnet::TShape c_shape; |
| GetOrCheckLRShape(attrs, a_moveaxis_shape, b_moveaxis_shape, &c_shape); |
| if (a_moveaxis_shape[a_ndim - 1] == 2 && b_moveaxis_shape[b_ndim - 1] == 2) { |
| // At least one N-D arrays and both dim = 2, param.axisc is ignored. |
| SHAPE_ASSIGN_CHECK(*out_attrs, 0, c_shape); |
| } else { |
| // At least one N-D arrays and at least one dim = 3, param.axisc not ignored. |
| // Check axisc is within bounds. |
| const Tuple<int> c_moveaxis_index = GetMoveaxisIndex(-1, param.axisc, c_shape); |
| const mxnet::TShape c_moveaxis_shape = GetMoveaxisShape(c_moveaxis_index, c_shape); |
| SHAPE_ASSIGN_CHECK(*out_attrs, 0, c_moveaxis_shape); |
| } |
| } |
| } |
| return shape_is_known(*in_attrs) && shape_is_known(*out_attrs); |
| } |
| |
| DMLC_REGISTER_PARAMETER(NumpyCrossParam); |
| |
| NNVM_REGISTER_OP(_npi_cross) |
| .set_attr_parser(ParamParser<NumpyCrossParam>) |
| .set_num_inputs(2) |
| .set_num_outputs(1) |
| .set_attr<nnvm::FListInputNames>("FListInputNames", [](const NodeAttrs& attrs) { |
| return std::vector<std::string>{"a", "b"}; |
| }) |
| .set_attr<mxnet::FInferShape>("FInferShape", NumpyCrossShape) |
| .set_attr<nnvm::FInferType>("FInferType", ElemwiseType<2, 1>) |
| .set_attr<FResourceRequest>("FResourceRequest", [](const NodeAttrs& attrs){ |
| return std::vector<ResourceRequest>{ResourceRequest::kTempSpace}; |
| }) |
| .set_attr<THasDeterministicOutput>("THasDeterministicOutput", true) |
| .set_attr<FCompute>("FCompute<cpu>", NumpyCrossForward<cpu>) |
| .set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseIn{"_backward_npi_cross"}) |
| .add_argument("a", "NDArray-or-Symbol", "First vector") |
| .add_argument("b", "NDArray-or-Symbol", "Second vector") |
| .add_arguments(NumpyCrossParam::__FIELDS__()); |
| |
| NNVM_REGISTER_OP(_backward_npi_cross) |
| .set_attr_parser(ParamParser<NumpyCrossParam>) |
| .set_num_inputs(3) |
| .set_num_outputs(2) |
| .set_attr<nnvm::TIsBackward>("TIsBackward", true) |
| .set_attr<FResourceRequest>("FResourceRequest", [](const NodeAttrs& attrs) { |
| return std::vector<ResourceRequest>(1, ResourceRequest::kTempSpace); |
| }) |
| .set_attr<FCompute>("FCompute<cpu>", NumpyCrossBackward<cpu>); |
| |
| } // namespace op |
| } // namespace mxnet |