blob: 6d5e05e98859978e4e0f8140ee9946ccaf859a55 [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*!
* Copyright (c) 2019 by Contributors
* \file np_eigvals.cc
* \brief CPU implementation placeholder of Eigvals Operator
*/
#include "./np_eigvals-inl.h"
namespace mxnet {
namespace op {
// Inputs: A.
// Outputs: Eig.
bool EigvalsOpShape(const nnvm::NodeAttrs& attrs,
mxnet::ShapeVector *in_attrs,
mxnet::ShapeVector *out_attrs) {
CHECK_EQ(in_attrs->size(), 1U);
CHECK_EQ(out_attrs->size(), 1U);
const mxnet::TShape& a_shape = (*in_attrs)[0];
const mxnet::TShape& eig_shape = (*out_attrs)[0];
if (shape_is_known(a_shape)) {
// Forward shape inference.
const int a_ndim = a_shape.ndim();
CHECK_GE(a_ndim, 2)
<< "Array must be at least two-dimensional";
CHECK_EQ(a_shape[a_ndim - 2], a_shape[a_ndim - 1])
<< "Input A's last two dimension must be equal";
// Calculate eig shape.
std::vector<int> eig_shape_vec(a_ndim - 1, -1);
for (int i = 0; i < a_ndim - 1; ++i) {
eig_shape_vec[i] = a_shape[i];
}
mxnet::TShape eig_shape(eig_shape_vec.begin(), eig_shape_vec.end());
SHAPE_ASSIGN_CHECK(*out_attrs, 0, eig_shape);
} else if (shape_is_known(eig_shape)) {
// Backward shape inference.
const int eig_ndim = eig_shape.ndim();
CHECK_GE(eig_ndim, 1)
<< "Outputs W must be at least one-dimensional";
std::vector<int> a_shape_vec(eig_ndim + 1);
for (int i = 0; i < eig_ndim; ++i) {
a_shape_vec[i] = eig_shape[i];
}
a_shape_vec[eig_ndim] = eig_shape[eig_ndim - 1];
mxnet::TShape a_shape(a_shape_vec.begin(), a_shape_vec.end());
SHAPE_ASSIGN_CHECK(*in_attrs, 0, a_shape);
}
return shape_is_known(*in_attrs) && shape_is_known(*out_attrs);
}
inline bool EigvalsOpType(const nnvm::NodeAttrs& attrs,
std::vector<int>* in_attrs,
std::vector<int>* out_attrs) {
CHECK_EQ(in_attrs->size(), 1U);
CHECK_EQ(out_attrs->size(), 1U);
int a_type = in_attrs->at(0);
// unsupport float16
CHECK_NE(a_type, mshadow::kFloat16)
<< "array type float16 is unsupported in linalg";
if (mshadow::kFloat32 == a_type) {
TYPE_ASSIGN_CHECK(*out_attrs, 0, in_attrs->at(0));
} else {
TYPE_ASSIGN_CHECK(*out_attrs, 0, mshadow::kFloat64);
}
return out_attrs->at(0) != -1;
}
NNVM_REGISTER_OP(_npi_eigvals)
.set_num_inputs(1)
.set_num_outputs(1)
.set_attr<nnvm::FListInputNames>("FListInputNames", [](const NodeAttrs& attrs){
return std::vector<std::string>{"A"};
})
.set_attr<mxnet::FInferShape>("FInferShape", EigvalsOpShape)
.set_attr<nnvm::FInferType>("FInferType", EigvalsOpType)
.set_attr<THasDeterministicOutput>("THasDeterministicOutput", true)
.set_attr<FCompute>("FCompute<cpu>", EigvalsOpForward<cpu>)
.set_attr<nnvm::FGradient>("FGradient", MakeZeroGradNodes)
.add_argument("A", "NDArray-or-Symbol", "Tensor of square matrix");
DMLC_REGISTER_PARAMETER(EigvalshParam);
NNVM_REGISTER_OP(_npi_eigvalsh)
.set_attr_parser(mxnet::op::ParamParser<EigvalshParam>)
.set_num_inputs(1)
.set_num_outputs(1)
.set_attr<nnvm::FListInputNames>("FListInputNames", [](const NodeAttrs& attrs){
return std::vector<std::string>{"A"};
})
.set_attr<mxnet::FInferShape>("FInferShape", EigvalsOpShape)
.set_attr<nnvm::FInferType>("FInferType", EigvalsOpType)
.set_attr<THasDeterministicOutput>("THasDeterministicOutput", true)
.set_attr<FCompute>("FCompute<cpu>", EigvalshOpForward<cpu>)
.set_attr<nnvm::FGradient>("FGradient", MakeZeroGradNodes)
.add_argument("A", "NDArray-or-Symbol", "Tensor of square matrix")
.add_arguments(EigvalshParam::__FIELDS__());
} // namespace op
} // namespace mxnet