| /* |
| * Licensed to the Apache Software Foundation (ASF) under one |
| * or more contributor license agreements. See the NOTICE file |
| * distributed with this work for additional information |
| * regarding copyright ownership. The ASF licenses this file |
| * to you under the Apache License, Version 2.0 (the |
| * "License"); you may not use this file except in compliance |
| * with the License. You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, |
| * software distributed under the License is distributed on an |
| * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| * KIND, either express or implied. See the License for the |
| * specific language governing permissions and limitations |
| * under the License. |
| */ |
| |
| /*! |
| * Copyright (c) 2019 by Contributors |
| * \file group_norm.cc |
| * \brief Implements Group Normalization (https://arxiv.org/abs/1803.08494). |
| */ |
| |
| #include "group_norm-inl.h" |
| #include <nnvm/op_attr_types.h> |
| #include "../elemwise_op_common.h" |
| |
| namespace mxnet { |
| namespace op { |
| |
| DMLC_REGISTER_PARAMETER(GroupNormParam); |
| |
| static bool GroupNormShape(const nnvm::NodeAttrs& attrs, |
| mxnet::ShapeVector *in_shape, |
| mxnet::ShapeVector *out_shape) { |
| const GroupNormParam& param = nnvm::get<GroupNormParam>(attrs.parsed); |
| using namespace mshadow; |
| CHECK_EQ(in_shape->size(), 3U) << "Input:[data, gamma, beta]"; |
| const mxnet::TShape &dshape = in_shape->at(groupnorm::kData); |
| if (!mxnet::ndim_is_known(dshape)) { |
| return false; |
| } |
| |
| CHECK_GE(dshape.ndim(), 3U); |
| const int num_groups = param.num_groups; |
| CHECK_EQ(dshape[1] % num_groups, 0) << "# of channels must be divisible by # of groups"; |
| |
| in_shape->at(groupnorm::kGamma) = mxnet::TShape(Shape1(dshape[1])); |
| in_shape->at(groupnorm::kBeta) = mxnet::TShape(Shape1(dshape[1])); |
| |
| out_shape->clear(); |
| out_shape->push_back(dshape); |
| |
| mxnet::TShape moments_shape(2, 1); |
| moments_shape[0] = dshape[0]; |
| moments_shape[1] = num_groups; |
| out_shape->push_back(moments_shape); |
| out_shape->push_back(moments_shape); |
| return true; |
| } |
| |
| NNVM_REGISTER_OP(GroupNorm) |
| .describe(R"code(Group normalization. |
| |
| The input channels are separated into ``num_groups`` groups, each containing ``num_channels / num_groups`` channels. |
| The mean and standard-deviation are calculated separately over the each group. |
| |
| .. math:: |
| |
| data = data.reshape((N, num_groups, C // num_groups, ...)) |
| out = \frac{data - mean(data, axis)}{\sqrt{var(data, axis) + \epsilon}} * gamma + beta |
| |
| Both ``gamma`` and ``beta`` are learnable parameters. |
| |
| )code" ADD_FILELINE) |
| .set_num_inputs(3) |
| .set_num_outputs(3) |
| .set_attr_parser(ParamParser<GroupNormParam>) |
| .set_attr<nnvm::FListInputNames>("FListInputNames", |
| [](const NodeAttrs& attrs) { |
| return std::vector<std::string>{"data", "gamma", "beta"}; |
| }) |
| .set_attr<nnvm::FListOutputNames>("FListOutputNames", |
| [](const NodeAttrs& attrs) { |
| return std::vector<std::string>{"output", "mean", "std"}; |
| }) |
| .set_attr<nnvm::FNumVisibleOutputs>("FNumVisibleOutputs", |
| [](const NodeAttrs& attrs) { |
| const GroupNormParam& param = nnvm::get<GroupNormParam>(attrs.parsed); |
| return param.output_mean_var ? 3 : 1; |
| }) |
| .set_attr<mxnet::FInferShape>("FInferShape", GroupNormShape) |
| .set_attr<nnvm::FInferType>("FInferType", ElemwiseType<3, 3>) |
| .set_attr<FCompute>("FCompute<cpu>", GroupNormCompute<cpu>) |
| .set_attr<nnvm::FGradient>("FGradient", [](const nnvm::ObjectPtr& n, |
| const std::vector<nnvm::NodeEntry>& ograds) { |
| std::vector<nnvm::NodeEntry> heads; |
| heads.push_back(ograds[0]); // ograd |
| heads.push_back(n->inputs[0]); // data |
| heads.push_back(n->inputs[1]); // gamma |
| heads.emplace_back(nnvm::NodeEntry{n, 1, 0}); // mean |
| heads.emplace_back(nnvm::NodeEntry{ n, 2, 0 }); // std |
| return MakeGradNode("_backward_GroupNorm", n, heads, n->attrs.dict); |
| }) |
| .set_attr<nnvm::FInplaceOption>("FInplaceOption", |
| [](const NodeAttrs& attrs) { |
| return std::vector<std::pair<int, int> >{{0, 0}}; |
| }) |
| .set_attr<FResourceRequest>("FResourceRequest", [](const NodeAttrs& n) { |
| return std::vector<ResourceRequest>{ResourceRequest::kTempSpace}; |
| }) |
| .set_attr<THasDeterministicOutput>("THasDeterministicOutput", true) |
| .add_argument("data", "NDArray-or-Symbol", "Input data") |
| .add_argument("gamma", "NDArray-or-Symbol", "gamma array") |
| .add_argument("beta", "NDArray-or-Symbol", "beta array") |
| .add_arguments(GroupNormParam::__FIELDS__()); |
| |
| |
| NNVM_REGISTER_OP(_backward_GroupNorm) |
| .set_num_inputs(5) |
| .set_num_outputs(3) |
| .set_attr<nnvm::TIsBackward>("TIsBackward", true) |
| .set_attr_parser(ParamParser<GroupNormParam>) |
| .set_attr<FCompute>("FCompute<cpu>", GroupNormGradCompute<cpu>) |
| .set_attr<FResourceRequest>("FResourceRequest", [](const NodeAttrs& n) { |
| return std::vector<ResourceRequest>{ResourceRequest::kTempSpace}; |
| }); |
| |
| } // namespace op |
| } // namespace mxnet |