blob: cbe2caeb394ea5386a94000332a99abcbc6724db [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*!
* Copyright (c) 2015 by Contributors
* \file l2_normalization.cc
* \brief l2 normalization operator
*/
#include "./l2_normalization-inl.h"
/* VisualStudio only supports openmp 2.0 */
#ifdef _MSC_VER
#define collapse(x)
#endif
namespace mxnet {
namespace op {
template<typename DType>
class L2NormalizationOpCPU : public L2NormalizationOp<cpu, DType> {
public:
explicit L2NormalizationOpCPU(L2NormalizationParam p)
: L2NormalizationOp<cpu, DType>(p) {}
void Forward(const OpContext &ctx, const std::vector<TBlob> &in_data,
const std::vector<OpReqType> &req,
const std::vector<TBlob> &out_data,
const std::vector<TBlob> &aux_args) override {
using namespace mshadow;
using namespace mshadow::expr;
if (req[l2_normalization::kOut] == kNullOp) return;
CHECK_EQ(req[l2_normalization::kOut], kWriteTo);
CHECK_EQ(in_data.size(), 1U);
CHECK_EQ(out_data.size(), 2U);
Stream<cpu> *s = ctx.get_stream<cpu>();
mxnet::TShape orig_shape = in_data[l2_normalization::kData].shape_;
auto omp_threads = engine::OpenMP::Get()->GetRecommendedOMPThreadCount();
if (this->param_.mode == l2_normalization::kInstance) {
Shape<2> dshape = Shape2(orig_shape[0],
orig_shape.ProdShape(1, orig_shape.ndim()));
Tensor<cpu, 2, DType> data = in_data[l2_normalization::kData]
.get_with_shape<cpu, 2, DType>(dshape, s);
Tensor<cpu, 2, DType> out = out_data[l2_normalization::kOut]
.get_with_shape<cpu, 2, DType>(dshape, s);
Tensor<cpu, 1, DType> norm = out_data[l2_normalization::kNorm].get<cpu, 1, DType>(s);
#pragma omp parallel for num_threads(omp_threads)
for (int shape0 = 0; shape0 < static_cast<int>(dshape[0]); shape0++) {
norm[shape0] = DType(this->param_.eps);
for (int shape1 = 0; shape1 < static_cast<int>(dshape[1]); shape1++) {
norm[shape0] += data[shape0][shape1] * data[shape0][shape1];
}
norm[shape0] = std::sqrt(norm[shape0]);
for (int shape1 = 0; shape1 < static_cast<int>(dshape[1]); shape1++) {
out[shape0][shape1] = data[shape0][shape1] / norm[shape0];
}
}
} else if (this->param_.mode == l2_normalization::kChannel) {
CHECK_GE(orig_shape.ndim(), 3);
Shape<3> dshape = Shape3(orig_shape[0], orig_shape[1],
orig_shape.ProdShape(2, orig_shape.ndim()));
Tensor<cpu, 3, DType> data = in_data[l2_normalization::kData]
.get_with_shape<cpu, 3, DType>(dshape, s);
Tensor<cpu, 3, DType> out = out_data[l2_normalization::kOut]
.get_with_shape<cpu, 3, DType>(dshape, s);
Shape<2> norm_shape = Shape2(dshape[0], dshape[2]);
Tensor<cpu, 2, DType> norm = out_data[l2_normalization::kNorm]
.get_with_shape<cpu, 2, DType>(norm_shape, s);
#pragma omp parallel for num_threads(omp_threads) collapse(2)
for (int shape0 = 0; shape0 < static_cast<int>(dshape[0]); shape0++) {
for (int shape2 = 0; shape2 < static_cast<int>(dshape[2]); shape2++) {
norm[shape0][shape2] = DType(this->param_.eps);
for (int shape1 = 0; shape1 < static_cast<int>(dshape[1]); shape1++) {
norm[shape0][shape2] += data[shape0][shape1][shape2] * data[shape0][shape1][shape2];
}
norm[shape0][shape2] = std::sqrt(norm[shape0][shape2]);
for (int shape1 = 0; shape1 < static_cast<int>(dshape[1]); shape1++) {
out[shape0][shape1][shape2] = data[shape0][shape1][shape2] / norm[shape0][shape2];
}
}
}
} else if (this->param_.mode == l2_normalization::kSpatial) {
CHECK_GE(orig_shape.ndim(), 3);
Shape<3> dshape = Shape3(orig_shape[0], orig_shape[1],
orig_shape.ProdShape(2, orig_shape.ndim()));
Tensor<cpu, 3, DType> data = in_data[l2_normalization::kData]
.get_with_shape<cpu, 3, DType>(dshape, s);
Tensor<cpu, 3, DType> out = out_data[l2_normalization::kOut]
.get_with_shape<cpu, 3, DType>(dshape, s);
Shape<2> norm_shape = Shape2(dshape[0], dshape[1]);
Tensor<cpu, 2, DType> norm = out_data[l2_normalization::kNorm]
.get_with_shape<cpu, 2, DType>(norm_shape, s);
#pragma omp parallel for num_threads(omp_threads) collapse(2)
for (int shape0 = 0; shape0 < static_cast<int>(dshape[0]); shape0++) {
for (int shape1 = 0; shape1 < static_cast<int>(dshape[1]); shape1++) {
norm[shape0][shape1] = DType(this->param_.eps);
for (int shape2 = 0; shape2 < static_cast<int>(dshape[2]); shape2++) {
norm[shape0][shape1] += data[shape0][shape1][shape2] * data[shape0][shape1][shape2];
}
norm[shape0][shape1] = std::sqrt(norm[shape0][shape1]);
for (int shape2 = 0; shape2 < static_cast<int>(dshape[2]); shape2++) {
out[shape0][shape1][shape2] = data[shape0][shape1][shape2] / norm[shape0][shape1];
}
}
}
} else {
LOG(FATAL) << "Unexpected mode in l2 normalization";
}
}
};
template<>
Operator* CreateOp<cpu>(L2NormalizationParam param, int dtype) {
Operator* op = nullptr;
MSHADOW_REAL_TYPE_SWITCH(dtype, DType, {
op = new L2NormalizationOpCPU<DType>(param);
});
return op;
}
// DO_BIND_DISPATCH comes from static_operator_common.h
Operator* L2NormalizationProp::CreateOperatorEx(Context ctx, mxnet::ShapeVector *in_shape,
std::vector<int> *in_type) const {
DO_BIND_DISPATCH(CreateOp, this->param_, in_type->at(0));
}
DMLC_REGISTER_PARAMETER(L2NormalizationParam);
MXNET_REGISTER_OP_PROPERTY(L2Normalization, L2NormalizationProp)
.describe(R"code(Normalize the input array using the L2 norm.
For 1-D NDArray, it computes::
out = data / sqrt(sum(data ** 2) + eps)
For N-D NDArray, if the input array has shape (N, N, ..., N),
with ``mode`` = ``instance``, it normalizes each instance in the multidimensional
array by its L2 norm.::
for i in 0...N
out[i,:,:,...,:] = data[i,:,:,...,:] / sqrt(sum(data[i,:,:,...,:] ** 2) + eps)
with ``mode`` = ``channel``, it normalizes each channel in the array by its L2 norm.::
for i in 0...N
out[:,i,:,...,:] = data[:,i,:,...,:] / sqrt(sum(data[:,i,:,...,:] ** 2) + eps)
with ``mode`` = ``spatial``, it normalizes the cross channel norm for each position
in the array by its L2 norm.::
for dim in 2...N
for i in 0...N
out[.....,i,...] = take(out, indices=i, axis=dim) / sqrt(sum(take(out, indices=i, axis=dim) ** 2) + eps)
-dim-
Example::
x = [[[1,2],
[3,4]],
[[2,2],
[5,6]]]
L2Normalization(x, mode='instance')
=[[[ 0.18257418 0.36514837]
[ 0.54772252 0.73029673]]
[[ 0.24077171 0.24077171]
[ 0.60192931 0.72231513]]]
L2Normalization(x, mode='channel')
=[[[ 0.31622776 0.44721359]
[ 0.94868326 0.89442718]]
[[ 0.37139067 0.31622776]
[ 0.92847669 0.94868326]]]
L2Normalization(x, mode='spatial')
=[[[ 0.44721359 0.89442718]
[ 0.60000002 0.80000001]]
[[ 0.70710677 0.70710677]
[ 0.6401844 0.76822126]]]
)code" ADD_FILELINE)
.add_argument("data", "NDArray-or-Symbol", "Input array to normalize.")
.add_arguments(L2NormalizationParam::__FIELDS__());
} // namespace op
} // namespace mxnet