| /* |
| * Licensed to the Apache Software Foundation (ASF) under one |
| * or more contributor license agreements. See the NOTICE file |
| * distributed with this work for additional information |
| * regarding copyright ownership. The ASF licenses this file |
| * to you under the Apache License, Version 2.0 (the |
| * "License"); you may not use this file except in compliance |
| * with the License. You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, |
| * software distributed under the License is distributed on an |
| * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| * KIND, either express or implied. See the License for the |
| * specific language governing permissions and limitations |
| * under the License. |
| */ |
| |
| /*! |
| * Copyright (c) 2015 by Contributors |
| * \file l2_normalization.cc |
| * \brief l2 normalization operator |
| */ |
| #include "./l2_normalization-inl.h" |
| |
| /* VisualStudio only supports openmp 2.0 */ |
| #ifdef _MSC_VER |
| #define collapse(x) |
| #endif |
| |
| namespace mxnet { |
| namespace op { |
| |
| template<typename DType> |
| class L2NormalizationOpCPU : public L2NormalizationOp<cpu, DType> { |
| public: |
| explicit L2NormalizationOpCPU(L2NormalizationParam p) |
| : L2NormalizationOp<cpu, DType>(p) {} |
| void Forward(const OpContext &ctx, const std::vector<TBlob> &in_data, |
| const std::vector<OpReqType> &req, |
| const std::vector<TBlob> &out_data, |
| const std::vector<TBlob> &aux_args) override { |
| using namespace mshadow; |
| using namespace mshadow::expr; |
| if (req[l2_normalization::kOut] == kNullOp) return; |
| CHECK_EQ(req[l2_normalization::kOut], kWriteTo); |
| CHECK_EQ(in_data.size(), 1U); |
| CHECK_EQ(out_data.size(), 2U); |
| Stream<cpu> *s = ctx.get_stream<cpu>(); |
| mxnet::TShape orig_shape = in_data[l2_normalization::kData].shape_; |
| auto omp_threads = engine::OpenMP::Get()->GetRecommendedOMPThreadCount(); |
| if (this->param_.mode == l2_normalization::kInstance) { |
| Shape<2> dshape = Shape2(orig_shape[0], |
| orig_shape.ProdShape(1, orig_shape.ndim())); |
| Tensor<cpu, 2, DType> data = in_data[l2_normalization::kData] |
| .get_with_shape<cpu, 2, DType>(dshape, s); |
| Tensor<cpu, 2, DType> out = out_data[l2_normalization::kOut] |
| .get_with_shape<cpu, 2, DType>(dshape, s); |
| Tensor<cpu, 1, DType> norm = out_data[l2_normalization::kNorm].get<cpu, 1, DType>(s); |
| #pragma omp parallel for num_threads(omp_threads) |
| for (int shape0 = 0; shape0 < static_cast<int>(dshape[0]); shape0++) { |
| norm[shape0] = DType(this->param_.eps); |
| for (int shape1 = 0; shape1 < static_cast<int>(dshape[1]); shape1++) { |
| norm[shape0] += data[shape0][shape1] * data[shape0][shape1]; |
| } |
| norm[shape0] = std::sqrt(norm[shape0]); |
| for (int shape1 = 0; shape1 < static_cast<int>(dshape[1]); shape1++) { |
| out[shape0][shape1] = data[shape0][shape1] / norm[shape0]; |
| } |
| } |
| } else if (this->param_.mode == l2_normalization::kChannel) { |
| CHECK_GE(orig_shape.ndim(), 3); |
| Shape<3> dshape = Shape3(orig_shape[0], orig_shape[1], |
| orig_shape.ProdShape(2, orig_shape.ndim())); |
| Tensor<cpu, 3, DType> data = in_data[l2_normalization::kData] |
| .get_with_shape<cpu, 3, DType>(dshape, s); |
| Tensor<cpu, 3, DType> out = out_data[l2_normalization::kOut] |
| .get_with_shape<cpu, 3, DType>(dshape, s); |
| Shape<2> norm_shape = Shape2(dshape[0], dshape[2]); |
| Tensor<cpu, 2, DType> norm = out_data[l2_normalization::kNorm] |
| .get_with_shape<cpu, 2, DType>(norm_shape, s); |
| #pragma omp parallel for num_threads(omp_threads) collapse(2) |
| for (int shape0 = 0; shape0 < static_cast<int>(dshape[0]); shape0++) { |
| for (int shape2 = 0; shape2 < static_cast<int>(dshape[2]); shape2++) { |
| norm[shape0][shape2] = DType(this->param_.eps); |
| for (int shape1 = 0; shape1 < static_cast<int>(dshape[1]); shape1++) { |
| norm[shape0][shape2] += data[shape0][shape1][shape2] * data[shape0][shape1][shape2]; |
| } |
| norm[shape0][shape2] = std::sqrt(norm[shape0][shape2]); |
| for (int shape1 = 0; shape1 < static_cast<int>(dshape[1]); shape1++) { |
| out[shape0][shape1][shape2] = data[shape0][shape1][shape2] / norm[shape0][shape2]; |
| } |
| } |
| } |
| } else if (this->param_.mode == l2_normalization::kSpatial) { |
| CHECK_GE(orig_shape.ndim(), 3); |
| Shape<3> dshape = Shape3(orig_shape[0], orig_shape[1], |
| orig_shape.ProdShape(2, orig_shape.ndim())); |
| Tensor<cpu, 3, DType> data = in_data[l2_normalization::kData] |
| .get_with_shape<cpu, 3, DType>(dshape, s); |
| Tensor<cpu, 3, DType> out = out_data[l2_normalization::kOut] |
| .get_with_shape<cpu, 3, DType>(dshape, s); |
| Shape<2> norm_shape = Shape2(dshape[0], dshape[1]); |
| Tensor<cpu, 2, DType> norm = out_data[l2_normalization::kNorm] |
| .get_with_shape<cpu, 2, DType>(norm_shape, s); |
| #pragma omp parallel for num_threads(omp_threads) collapse(2) |
| for (int shape0 = 0; shape0 < static_cast<int>(dshape[0]); shape0++) { |
| for (int shape1 = 0; shape1 < static_cast<int>(dshape[1]); shape1++) { |
| norm[shape0][shape1] = DType(this->param_.eps); |
| for (int shape2 = 0; shape2 < static_cast<int>(dshape[2]); shape2++) { |
| norm[shape0][shape1] += data[shape0][shape1][shape2] * data[shape0][shape1][shape2]; |
| } |
| norm[shape0][shape1] = std::sqrt(norm[shape0][shape1]); |
| for (int shape2 = 0; shape2 < static_cast<int>(dshape[2]); shape2++) { |
| out[shape0][shape1][shape2] = data[shape0][shape1][shape2] / norm[shape0][shape1]; |
| } |
| } |
| } |
| } else { |
| LOG(FATAL) << "Unexpected mode in l2 normalization"; |
| } |
| } |
| }; |
| |
| template<> |
| Operator* CreateOp<cpu>(L2NormalizationParam param, int dtype) { |
| Operator* op = nullptr; |
| MSHADOW_REAL_TYPE_SWITCH(dtype, DType, { |
| op = new L2NormalizationOpCPU<DType>(param); |
| }); |
| return op; |
| } |
| |
| // DO_BIND_DISPATCH comes from static_operator_common.h |
| Operator* L2NormalizationProp::CreateOperatorEx(Context ctx, mxnet::ShapeVector *in_shape, |
| std::vector<int> *in_type) const { |
| DO_BIND_DISPATCH(CreateOp, this->param_, in_type->at(0)); |
| } |
| |
| DMLC_REGISTER_PARAMETER(L2NormalizationParam); |
| |
| MXNET_REGISTER_OP_PROPERTY(L2Normalization, L2NormalizationProp) |
| .describe(R"code(Normalize the input array using the L2 norm. |
| |
| For 1-D NDArray, it computes:: |
| |
| out = data / sqrt(sum(data ** 2) + eps) |
| |
| For N-D NDArray, if the input array has shape (N, N, ..., N), |
| |
| with ``mode`` = ``instance``, it normalizes each instance in the multidimensional |
| array by its L2 norm.:: |
| |
| for i in 0...N |
| out[i,:,:,...,:] = data[i,:,:,...,:] / sqrt(sum(data[i,:,:,...,:] ** 2) + eps) |
| |
| with ``mode`` = ``channel``, it normalizes each channel in the array by its L2 norm.:: |
| |
| for i in 0...N |
| out[:,i,:,...,:] = data[:,i,:,...,:] / sqrt(sum(data[:,i,:,...,:] ** 2) + eps) |
| |
| with ``mode`` = ``spatial``, it normalizes the cross channel norm for each position |
| in the array by its L2 norm.:: |
| |
| for dim in 2...N |
| for i in 0...N |
| out[.....,i,...] = take(out, indices=i, axis=dim) / sqrt(sum(take(out, indices=i, axis=dim) ** 2) + eps) |
| -dim- |
| |
| Example:: |
| |
| x = [[[1,2], |
| [3,4]], |
| [[2,2], |
| [5,6]]] |
| |
| L2Normalization(x, mode='instance') |
| =[[[ 0.18257418 0.36514837] |
| [ 0.54772252 0.73029673]] |
| [[ 0.24077171 0.24077171] |
| [ 0.60192931 0.72231513]]] |
| |
| L2Normalization(x, mode='channel') |
| =[[[ 0.31622776 0.44721359] |
| [ 0.94868326 0.89442718]] |
| [[ 0.37139067 0.31622776] |
| [ 0.92847669 0.94868326]]] |
| |
| L2Normalization(x, mode='spatial') |
| =[[[ 0.44721359 0.89442718] |
| [ 0.60000002 0.80000001]] |
| [[ 0.70710677 0.70710677] |
| [ 0.6401844 0.76822126]]] |
| |
| )code" ADD_FILELINE) |
| .add_argument("data", "NDArray-or-Symbol", "Input array to normalize.") |
| .add_arguments(L2NormalizationParam::__FIELDS__()); |
| } // namespace op |
| } // namespace mxnet |