| /* |
| * Licensed to the Apache Software Foundation (ASF) under one |
| * or more contributor license agreements. See the NOTICE file |
| * distributed with this work for additional information |
| * regarding copyright ownership. The ASF licenses this file |
| * to you under the Apache License, Version 2.0 (the |
| * "License"); you may not use this file except in compliance |
| * with the License. You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, |
| * software distributed under the License is distributed on an |
| * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| * KIND, either express or implied. See the License for the |
| * specific language governing permissions and limitations |
| * under the License. |
| */ |
| |
| /*! |
| * Copyright (c) 2019 by Contributors |
| * \file crop-cc.h |
| * \brief the image crop operator registration |
| */ |
| |
| #include "mxnet/base.h" |
| #include "crop-inl.h" |
| #include "../operator_common.h" |
| #include "../elemwise_op_common.h" |
| |
| namespace mxnet { |
| namespace op { |
| namespace image { |
| |
| DMLC_REGISTER_PARAMETER(CropParam); |
| DMLC_REGISTER_PARAMETER(RandomCropParam); |
| DMLC_REGISTER_PARAMETER(RandomResizedCropParam); |
| |
| NNVM_REGISTER_OP(_image_crop) |
| .add_alias("_npx__image_crop") |
| .describe(R"code(Crop an image NDArray of shape (H x W x C) or (N x H x W x C) |
| to the given size. Example: |
| .. code-block:: python |
| |
| image = mx.nd.random.uniform(0, 255, (4, 2, 3)).astype(dtype=np.uint8) |
| mx.nd.image.crop(image, 1, 1, 2, 2).shape # (2, 2, 3) |
| image = mx.nd.random.uniform(0, 255, (2, 4, 2, 3)).astype(dtype=np.uint8) |
| mx.nd.image.crop(image, 1, 1, 2, 2) # (2, 2, 2, 3) |
| |
| )code" ADD_FILELINE) |
| .set_num_inputs(1) |
| .set_num_outputs(1) |
| .set_attr_parser(ParamParser<CropParam>) |
| .set_attr<mxnet::FInferShape>("FInferShape", CropShape) |
| .set_attr<nnvm::FInferType>("FInferType", ElemwiseType<1, 1>) |
| .set_attr<FCompute>("FCompute<cpu>", CropOpForward<cpu>) |
| .set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseNone{ "_backward_image_crop" }) |
| .add_argument("data", "NDArray-or-Symbol", "The input.") |
| .add_arguments(CropParam::__FIELDS__()); |
| |
| NNVM_REGISTER_OP(_backward_image_crop) |
| .set_attr_parser(ParamParser<CropParam>) |
| .set_num_inputs(1) |
| .set_num_outputs(1) |
| .set_attr<nnvm::TIsBackward>("TIsBackward", true) |
| .set_attr<FCompute>("FCompute<cpu>", CropOpBackward<cpu>); |
| |
| NNVM_REGISTER_OP(_image_random_crop) |
| .add_alias("_npx__image_random_crop") |
| .describe(R"code(Randomly crop an image NDArray of shape (H x W x C) or (N x H x W x C) |
| to the given size. Upsample result if `src` is smaller than `size`. Example: |
| |
| .. code-block:: python |
| |
| im = mx.nd.array(cv2.imread("flower.jpg")) |
| cropped_im, rect = mx.nd.image.random_crop(im, (100, 100)) |
| |
| )code" ADD_FILELINE) |
| .set_num_inputs(1) |
| .set_num_outputs(2) |
| .set_attr_parser(ParamParser<RandomCropParam>) |
| .set_attr<nnvm::FNumVisibleOutputs>( |
| "FNumVisibleOutputs", [](const NodeAttrs& attrs) { return static_cast<uint32_t>(1); }) |
| .set_attr<mxnet::FInferShape>("FInferShape", RandomCropShape) |
| .set_attr<nnvm::FInferType>("FInferType", ElemwiseType<1, 2>) |
| .set_attr<FCompute>("FCompute<cpu>", RandomCropOpForward<cpu>) |
| .set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseNone{ "_backward_random_image_crop" }) |
| .set_attr<FResourceRequest>("FResourceRequest", |
| [](const NodeAttrs& attrs) { |
| return std::vector<ResourceRequest>{ |
| ResourceRequest::kRandom, ResourceRequest::kTempSpace}; |
| }) |
| .add_argument("data", "NDArray-or-Symbol", "The input.") |
| .add_arguments(RandomCropParam::__FIELDS__()); |
| |
| NNVM_REGISTER_OP(_backward_random_image_crop) |
| .set_attr_parser(ParamParser<RandomCropParam>) |
| .set_num_inputs(2) |
| .set_num_outputs(1) |
| .set_attr<nnvm::TIsBackward>("TIsBackward", true) |
| .set_attr<FCompute>("FCompute<cpu>", RandomCropOpBackward<cpu>); |
| |
| NNVM_REGISTER_OP(_image_random_resized_crop) |
| .add_alias("_npx__image_random_resized_crop") |
| .describe(R"code(Randomly crop an image NDArray of shape (H x W x C) or (N x H x W x C) |
| to the given size. Randomize area and aspect ratio. Upsample result if `src` is smaller than `size`. |
| Example: |
| .. code-block:: python |
| |
| im = mx.nd.array(cv2.imread("flower.jpg")) |
| cropped_im, rect = mx.nd.image.random_resized_crop(im, (100, 100)) |
| |
| )code" ADD_FILELINE) |
| .set_num_inputs(1) |
| .set_num_outputs(1) |
| .set_attr_parser(ParamParser<RandomResizedCropParam>) |
| .set_attr<mxnet::FInferShape>("FInferShape", RandomResizedCropShape) |
| .set_attr<nnvm::FInferType>("FInferType", ElemwiseType<1, 1>) |
| .set_attr<FCompute>("FCompute<cpu>", RandomResizedCropOpForward<cpu>) |
| .set_attr<nnvm::FGradient>("FGradient", |
| ElemwiseGradUseNone{ "_backward_random_resized_image_crop" }) |
| .set_attr<FResourceRequest>("FResourceRequest", |
| [](const NodeAttrs& attrs) { |
| return std::vector<ResourceRequest>{ |
| ResourceRequest::kRandom, ResourceRequest::kTempSpace}; |
| }) |
| .add_argument("data", "NDArray-or-Symbol", "The input.") |
| .add_arguments(RandomCropParam::__FIELDS__()); |
| |
| NNVM_REGISTER_OP(_backward_random_resized_image_crop) |
| .set_attr_parser(ParamParser<RandomResizedCropParam>) |
| .set_num_inputs(1) |
| .set_num_outputs(1) |
| .set_attr<nnvm::TIsBackward>("TIsBackward", true) |
| .set_attr<FCompute>("FCompute<cpu>", RandomResizedCropOpBackward<cpu>); |
| } // namespace image |
| } // namespace op |
| } // namespace mxnet |