| /* |
| * Licensed to the Apache Software Foundation (ASF) under one |
| * or more contributor license agreements. See the NOTICE file |
| * distributed with this work for additional information |
| * regarding copyright ownership. The ASF licenses this file |
| * to you under the Apache License, Version 2.0 (the |
| * "License"); you may not use this file except in compliance |
| * with the License. You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, |
| * software distributed under the License is distributed on an |
| * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| * KIND, either express or implied. See the License for the |
| * specific language governing permissions and limitations |
| * under the License. |
| */ |
| |
| /*! |
| * Copyright (c) 2015 by Contributors |
| * \file correlation.cc |
| * \brief correlation op |
| * \author Xu Dong |
| */ |
| #include "./correlation-inl.h" |
| #include "./mshadow_op.h" |
| |
| namespace mshadow { |
| template<typename Dtype> |
| void AddPad(const Tensor<cpu, 4, Dtype> &original, |
| const Tensor<cpu, 4, Dtype> &out, |
| int pad_size) |
| { for (index_t nbatch = 0 ; nbatch < original.size(0) ; nbatch++) |
| for (index_t channel = 0 ; channel < original.size(1) ; channel++) |
| for (index_t h = 0 ; h < original.size(2) ; h++) |
| for (index_t w = 0 ; w < original.size(3) ; w++) |
| out[nbatch][h+pad_size][w+pad_size][channel] = original[nbatch][channel][h][w]; |
| } |
| template<typename Dtype> |
| inline void CorrelationForward(const Tensor<cpu, 4, Dtype> &out, |
| const Tensor<cpu, 4, Dtype> &data1, |
| const Tensor<cpu, 4, Dtype> &data2, |
| const Tensor<cpu, 4, Dtype> &tmp1, |
| const Tensor<cpu, 4, Dtype> &tmp2, |
| int top_channels_, int top_height_, int top_width_, |
| int pad_size_, bool is_multiply, |
| int max_displacement_, int kernel_size_, |
| int neighborhood_grid_radius_, int neighborhood_grid_width_, |
| int kernel_radius_, int stride1_, int stride2_) { |
| const index_t bnum = data1.size(0); |
| const int bchannels = data1.size(1); |
| const int sumelems = kernel_size_ * kernel_size_ * bchannels; |
| AddPad<Dtype>(data1, tmp1, pad_size_); |
| index_t top_channels_unsigned_ = static_cast<index_t>(top_channels_); |
| AddPad<Dtype>(data2, tmp2, pad_size_); |
| for (index_t i = 0 ; i < static_cast<index_t>(top_height_) ; i++) |
| for (index_t j = 0 ; j < static_cast<index_t>(top_width_); j++) |
| for (index_t nbatch = 0 ; nbatch < bnum ; nbatch++) { |
| int x1 = j*stride1_+max_displacement_; |
| int y1 = i*stride1_+max_displacement_; |
| for (index_t top_channel = 0 ; top_channel < top_channels_unsigned_ ; top_channel++) { |
| int s2o = (top_channel % neighborhood_grid_width_ -\ |
| neighborhood_grid_radius_) * stride2_; |
| int s2p = (top_channel / neighborhood_grid_width_ -\ |
| neighborhood_grid_radius_) * stride2_; |
| int x2 = x1 + s2o; |
| int y2 = y1 + s2p; |
| for (index_t h = 0; h < static_cast<index_t>(kernel_size_); h++) |
| for (index_t w = 0; w < static_cast<index_t>(kernel_size_); w++) |
| for (index_t channel = 0; channel < static_cast<index_t>(bchannels); channel++) { |
| if (is_multiply == true) |
| out[nbatch][top_channel][i][j] += \ |
| tmp1[nbatch][y1+h][x1+w][channel]*tmp2[nbatch][y2+h][x2+w][channel]; |
| else |
| out[nbatch][top_channel][i][j] += std::abs(\ |
| tmp1[nbatch][y1+h][x1+w][channel]-tmp2[nbatch][y2+h][x2+w][channel]); |
| } |
| out[nbatch][top_channel][i][j] /= sumelems; |
| } |
| } |
| } |
| template<typename Dtype> |
| inline void CorrelationBackward(const Tensor<cpu, 4, Dtype> &out_grad, |
| const Tensor<cpu, 4, Dtype> &in_grad1, |
| const Tensor<cpu, 4, Dtype> &in_grad2, |
| const Tensor<cpu, 4, Dtype> &tmp1, |
| const Tensor<cpu, 4, Dtype> &tmp2, |
| int top_channels_, int top_height_, |
| int top_width_, int pad_size_, |
| bool is_multiply, int max_displacement_, |
| int kernel_size_, int neighborhood_grid_radius_, |
| int neighborhood_grid_width_, |
| int kernel_radius_, int stride1_, |
| int stride2_, int num, |
| int channels, int height, int width |
| ) { |
| const float sumelems = kernel_size_ * kernel_size_ * channels; |
| for (index_t i = 0 ; i < static_cast<index_t>(top_height_) ; i++) |
| for (index_t j = 0 ; j < static_cast<index_t>(top_width_); j++) |
| for (index_t nbatch = 0 ; nbatch < static_cast<index_t>(num) ; nbatch++) { |
| int x1 = j*stride1_+max_displacement_; |
| int y1 = i*stride1_+max_displacement_; |
| for (int top_channel = 0 ; top_channel < top_channels_ ; top_channel++) { |
| int s2o = (top_channel % neighborhood_grid_width_ - \ |
| neighborhood_grid_radius_) * stride2_; |
| int s2p = (top_channel / neighborhood_grid_width_ - \ |
| neighborhood_grid_radius_) * stride2_; |
| int x2 = x1 + s2o; |
| int y2 = y1 + s2p; |
| for (int h = 0; h < kernel_size_; h++) |
| for (int w = 0; w < kernel_size_; w++) |
| for (int channel = 0 ; channel < channels; channel++) { |
| if (is_multiply == true) { |
| if ((y1 + h - pad_size_ >= 0) && (x1 + w - pad_size_ >= 0) && \ |
| (y1 + h < height +pad_size_) && (x1 + w < width + pad_size_)) { |
| in_grad1[nbatch][channel][y1+h-pad_size_][x1+w-pad_size_] += \ |
| out_grad[nbatch][top_channel][i][j] * \ |
| tmp2[nbatch][y2+h][x2+w][channel]/sumelems; |
| } |
| if ((y2 + h - pad_size_ >= 0) && (x2 + w -pad_size_ >=0) && \ |
| (y2 + h < height +pad_size_) && (x2 + w < width + pad_size_)) { |
| in_grad2[nbatch][channel][y2+h-pad_size_][x2+w-pad_size_] += \ |
| out_grad[nbatch][top_channel][i][j] * \ |
| tmp1[nbatch][y1+h][x1+w][channel]/sumelems; |
| } |
| } else { |
| if ((y1 + h - pad_size_ >= 0) && (x1 + w -pad_size_ >=0) && \ |
| (y1 + h < height + pad_size_) && (x1 + w < width + pad_size_)) { |
| Dtype sign = (tmp1[nbatch][y1+h][x1+w][channel] >= \ |
| tmp2[nbatch][y2+h][x2+w][channel])? Dtype(1.0) : Dtype(-1.0); |
| in_grad1[nbatch][channel][y1+h-pad_size_][x1+w-pad_size_] +=\ |
| out_grad[nbatch][top_channel][i][j]*sign/sumelems; |
| } |
| if ((y2 + h - pad_size_ >= 0) && (x2 + w - pad_size_ >=0) && \ |
| (y2 + h < height + pad_size_) && (x2 + w < width + pad_size_)) { |
| Dtype sign = (tmp1[nbatch][y1+h][x1+w][channel] >= \ |
| tmp2[nbatch][y2+h][x2+w][channel])? Dtype(-1.0) : Dtype(1.0); |
| in_grad2[nbatch][channel][y2+h-pad_size_][x2+w-pad_size_] +=\ |
| out_grad[nbatch][top_channel][i][j]*sign/sumelems; |
| } |
| } |
| } |
| } |
| } |
| } |
| } // namespace mshadow |
| namespace mxnet { |
| namespace op { |
| template<> |
| Operator *CreateOp<cpu>(CorrelationParam param, int dtype) { |
| Operator* op = nullptr; |
| MSHADOW_REAL_TYPE_SWITCH(dtype, DType, { |
| op = new CorrelationOp<cpu, DType>(param); |
| }); |
| return op; |
| } |
| Operator* CorrelationProp::CreateOperatorEx(Context ctx, mxnet::ShapeVector *in_shape, |
| std::vector<int> *in_type) const { |
| DO_BIND_DISPATCH(CreateOp, param_, in_type->at(0)); |
| } |
| DMLC_REGISTER_PARAMETER(CorrelationParam); |
| MXNET_REGISTER_OP_PROPERTY(Correlation, CorrelationProp) |
| .add_argument("data1", "NDArray-or-Symbol", "Input data1 to the correlation.") |
| .add_argument("data2", "NDArray-or-Symbol", "Input data2 to the correlation.") |
| .add_arguments(CorrelationParam::__FIELDS__()) |
| .describe(R"code(Applies correlation to inputs. |
| |
| The correlation layer performs multiplicative patch comparisons between two feature maps. |
| |
| Given two multi-channel feature maps :math:`f_{1}, f_{2}`, with :math:`w`, :math:`h`, and :math:`c` being their width, height, and number of channels, |
| the correlation layer lets the network compare each patch from :math:`f_{1}` with each patch from :math:`f_{2}`. |
| |
| For now we consider only a single comparison of two patches. The 'correlation' of two patches centered at :math:`x_{1}` in the first map and |
| :math:`x_{2}` in the second map is then defined as: |
| |
| .. math:: |
| |
| c(x_{1}, x_{2}) = \sum_{o \in [-k,k] \times [-k,k]} <f_{1}(x_{1} + o), f_{2}(x_{2} + o)> |
| |
| for a square patch of size :math:`K:=2k+1`. |
| |
| Note that the equation above is identical to one step of a convolution in neural networks, but instead of convolving data with a filter, it convolves data with other |
| data. For this reason, it has no training weights. |
| |
| Computing :math:`c(x_{1}, x_{2})` involves :math:`c * K^{2}` multiplications. Comparing all patch combinations involves :math:`w^{2}*h^{2}` such computations. |
| |
| Given a maximum displacement :math:`d`, for each location :math:`x_{1}` it computes correlations :math:`c(x_{1}, x_{2})` only in a neighborhood of size :math:`D:=2d+1`, |
| by limiting the range of :math:`x_{2}`. We use strides :math:`s_{1}, s_{2}`, to quantize :math:`x_{1}` globally and to quantize :math:`x_{2}` within the neighborhood |
| centered around :math:`x_{1}`. |
| |
| The final output is defined by the following expression: |
| |
| .. math:: |
| out[n, q, i, j] = c(x_{i, j}, x_{q}) |
| |
| where :math:`i` and :math:`j` enumerate spatial locations in :math:`f_{1}`, and :math:`q` denotes the :math:`q^{th}` neighborhood of :math:`x_{i,j}`. |
| )code" ADD_FILELINE); |
| } // namespace op |
| } // namespace mxnet |