blob: 2778ff6450e6086eefd233ba2db2a6c965622e87 [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*!
* \file np_gamma_op.cc
* \brief Implementation of the API of functions in src/operator/numpy/random/np_gamma_op.cc
*/
#include <mxnet/api_registry.h>
#include <mxnet/runtime/packed_func.h>
#include <vector>
#include "../utils.h"
#include "../../../operator/numpy/random/np_gamma_op.h"
namespace mxnet {
MXNET_REGISTER_API("_npi.gamma")
.set_body([](runtime::MXNetArgs args, runtime::MXNetRetValue* ret) {
using namespace runtime;
const nnvm::Op* op = Op::Get("_npi_gamma");
nnvm::NodeAttrs attrs;
op::NumpyGammaParam param;
int num_inputs = 0;
std::vector<NDArray*> inputs;
if (args[0].type_code() == kDLFloat || args[0].type_code() == kDLInt) {
if (args[0].type_code() == kNull) {
param.shape = dmlc::nullopt;
} else {
param.shape = args[0].operator double();
}
if (args[1].type_code() == kDLFloat || args[1].type_code() == kDLInt) {
// both 'shape' and 'scale' are numeric types
num_inputs = 0;
if (args[1].type_code() == kNull) {
param.scale = dmlc::nullopt;
} else {
param.scale = args[1].operator double();
}
} else {
// 'shape' is numeric types but 'scale' is not
num_inputs = 1;
param.scale = dmlc::nullopt;
inputs.push_back(args[1].operator mxnet::NDArray*());
}
} else {
param.shape = dmlc::nullopt;
inputs.push_back(args[0].operator mxnet::NDArray*());
if (args[1].type_code() == kDLFloat || args[1].type_code() == kDLInt) {
// 'shape' is not numeric types but 'scale' is numeric types
num_inputs = 1;
if (args[1].type_code() == kNull) {
param.scale = dmlc::nullopt;
} else {
param.scale = args[1].operator double();
}
} else {
// nither 'shape' or 'scale' is numeric types
num_inputs = 2;
param.scale = dmlc::nullopt;
inputs.push_back(args[1].operator mxnet::NDArray*());
}
}
if (args[2].type_code() == kNull) {
param.size = dmlc::optional<mxnet::Tuple<index_t>>();
} else if (args[2].type_code() == kDLInt ||
args[2].type_code() == kDLFloat) {
param.size = Tuple<index_t>(1, args[2].operator int64_t());
} else {
param.size = Tuple<index_t>(args[2].operator ObjectRef());
}
if (args[4].type_code() == kNull) {
param.dtype = mxnet::common::GetDefaultDtype();
} else {
param.dtype = String2MXNetTypeWithBool(args[4].operator std::string());
}
NDArray* out = args[5].operator mxnet::NDArray*();
NDArray** outputs = out == nullptr ? nullptr : &out;
int num_outputs = out != nullptr;
attrs.parsed = param;
attrs.op = op;
if (args[3].type_code() != kNull) {
attrs.dict["ctx"] = args[3].operator std::string();
}
SetAttrDict<op::NumpyGammaParam>(&attrs);
auto ndoutputs = Invoke(op, &attrs, num_inputs, inputs.data(), &num_outputs, outputs);
if (out) {
*ret = PythonArg(5);
} else {
*ret = reinterpret_cast<mxnet::NDArray*>(ndoutputs[0]);
}
});
} // namespace mxnet