| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, |
| # software distributed under the License is distributed on an |
| # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| # KIND, either express or implied. See the License for the |
| # specific language governing permissions and limitations |
| # under the License. |
| |
| import mxnet as mx |
| from mxnet import gluon |
| from mxnet.gluon import nn, rnn |
| |
| class RNNModel(gluon.HybridBlock): |
| """A model with an encoder, recurrent layer, and a decoder.""" |
| |
| def __init__(self, mode, vocab_size, num_embed, num_hidden, |
| num_layers, dropout=0.5, tie_weights=False, **kwargs): |
| super(RNNModel, self).__init__(**kwargs) |
| with self.name_scope(): |
| self.drop = nn.Dropout(dropout) |
| self.encoder = nn.Embedding(vocab_size, num_embed, |
| weight_initializer=mx.init.Uniform(0.1)) |
| if mode == 'rnn_relu': |
| self.rnn = rnn.RNN(num_hidden, num_layers, dropout=dropout, |
| input_size=num_embed) |
| elif mode == 'rnn_tanh': |
| self.rnn = rnn.RNN(num_hidden, num_layers, 'tanh', dropout=dropout, |
| input_size=num_embed) |
| elif mode == 'lstm': |
| self.rnn = rnn.LSTM(num_hidden, num_layers, dropout=dropout, |
| input_size=num_embed) |
| elif mode == 'gru': |
| self.rnn = rnn.GRU(num_hidden, num_layers, dropout=dropout, |
| input_size=num_embed) |
| else: |
| raise ValueError("Invalid mode %s. Options are rnn_relu, " |
| "rnn_tanh, lstm, and gru"%mode) |
| |
| if tie_weights: |
| self.decoder = nn.Dense(vocab_size, in_units=num_hidden, |
| params=self.encoder.params) |
| else: |
| self.decoder = nn.Dense(vocab_size, in_units=num_hidden) |
| |
| self.num_hidden = num_hidden |
| |
| def hybrid_forward(self, F, inputs, hidden): |
| emb = self.drop(self.encoder(inputs)) |
| output, hidden = self.rnn(emb, hidden) |
| output = self.drop(output) |
| decoded = self.decoder(output.reshape((-1, self.num_hidden))) |
| return decoded, hidden |
| |
| def begin_state(self, *args, **kwargs): |
| return self.rnn.begin_state(*args, **kwargs) |