| /* |
| * Licensed to the Apache Software Foundation (ASF) under one |
| * or more contributor license agreements. See the NOTICE file |
| * distributed with this work for additional information |
| * regarding copyright ownership. The ASF licenses this file |
| * to you under the Apache License, Version 2.0 (the |
| * "License"); you may not use this file except in compliance |
| * with the License. You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, |
| * software distributed under the License is distributed on an |
| * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| * KIND, either express or implied. See the License for the |
| * specific language governing permissions and limitations |
| * under the License. |
| */ |
| |
| /*! |
| * Copyright (c) 2020 by Contributors |
| * \file relu_lib.cu |
| * \brief simple custom relu and noisy relu operator implemented using CUDA function |
| */ |
| |
| #ifndef __EXAMPLE__RELU_LIB_H__ |
| #define __EXAMPLE__RELU_LIB_H__ |
| |
| #include <iostream> |
| #include "mxnet/lib_api.h" |
| |
| using namespace mxnet::ext; |
| |
| #define NumThreadPerBlock 256 // mxnet recommended cuda thread number per block |
| #define NumRandomPerThread 64 // mxnet recommended random numbers generated per thread |
| |
| class MyStatefulReluCPU : public CustomStatefulOp { |
| public: |
| explicit MyStatefulReluCPU(const std::unordered_map<std::string, std::string>& attrs); |
| |
| MXReturnValue Forward(std::vector<MXTensor>* inputs, |
| std::vector<MXTensor>* outputs, |
| const OpResource& op_res); |
| MXReturnValue Backward(std::vector<MXTensor>* inputs, |
| std::vector<MXTensor>* outputs, |
| const OpResource& op_res); |
| |
| private: |
| const std::unordered_map<std::string, std::string> attrs_; |
| }; |
| |
| class MyStatefulReluGPU : public CustomStatefulOp { |
| public: |
| explicit MyStatefulReluGPU(const std::unordered_map<std::string, std::string>& attrs); |
| |
| MXReturnValue Forward(std::vector<MXTensor>* inputs, |
| std::vector<MXTensor>* outputs, |
| const OpResource& op_res); |
| |
| MXReturnValue Backward(std::vector<MXTensor>* inputs, |
| std::vector<MXTensor>* outputs, |
| const OpResource& op_res); |
| |
| private: |
| const std::unordered_map<std::string, std::string> attrs_; |
| }; |
| |
| MXReturnValue forwardGPU(const std::unordered_map<std::string, std::string>& attrs, |
| std::vector<MXTensor>* inputs, |
| std::vector<MXTensor>* outputs, |
| const OpResource& res); |
| |
| MXReturnValue backwardGPU(const std::unordered_map<std::string, std::string>& attrs, |
| std::vector<MXTensor>* inputs, |
| std::vector<MXTensor>* outputs, |
| const OpResource& res); |
| |
| /* |
| * Below is noisy ReLU operator example |
| * noisy ReLU is made from ReLU extended to include Gaussian noise |
| * forward - add Gaussian noise generated from normal distribution to each unit |
| * backward - gradient doesn't need to change since noise is constant |
| */ |
| |
| MXReturnValue noisyForwardGPU(const std::unordered_map<std::string, std::string>& attrs, |
| std::vector<MXTensor>* inputs, |
| std::vector<MXTensor>* outputs, |
| const OpResource& res); |
| |
| #endif |