blob: 7bdddf1dbbad6bba1df87a5089d6a5f405e8cb97 [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*!
* Copyright (c) 2016 by Contributors
* \file executor.h
* \brief executor definition
* \author Chuntao Hong, Zhang Chen
*/
#ifndef MXNET_CPP_EXECUTOR_H_
#define MXNET_CPP_EXECUTOR_H_
#include <vector>
#include <map>
#include <set>
#include <string>
#include <algorithm>
#include "mxnet-cpp/base.h"
#include "mxnet-cpp/symbol.h"
namespace mxnet {
namespace cpp {
class Optimizer;
/*!
* \brief Executor interface
*/
class Executor {
public:
Executor(const Symbol &symbol, Context context,
const std::vector<NDArray> &arg_arrays,
const std::vector<NDArray> &grad_arrays,
const std::vector<OpReqType> &grad_reqs,
const std::vector<NDArray> &aux_arrays,
const std::map<std::string, Context> &group_to_ctx =
std::map<std::string, Context>(),
Executor *shared_exec = nullptr);
explicit Executor(const CachedOpHandle &h) { handle_ = h; }
/*!
* \brief Perform a Forward operation of Operator
* After this operation, user can get the result by using function head.
*/
void Forward(bool is_train) {
std::vector<NDArrayHandle> arg_handles;
for (const auto &array : combined_arrays) {
arg_handles.push_back(array.GetHandle());
}
int prev_is_record = 0;
int prev_train_mode = 0;
CHECK_EQ(MXAutogradSetIsRecording(1, &prev_is_record), 0);
if (is_train == true) {
CHECK_EQ(MXAutogradSetIsTraining(1, &prev_train_mode), 0);
}
std::vector<NDArrayHandle> output_handles;
std::transform(outputs.begin(), outputs.end(),
std::back_inserter(output_handles), [](NDArray& a) {
return a.GetHandle();
});
int out_size = 0;
NDArrayHandle *out_array = nullptr;
CHECK_EQ(MXInvokeCachedOp(handle_, arg_handles.size(), arg_handles.data(),
device_type, device_id, &out_size, &out_array, nullptr),
0);
outputs.clear();
outputs.reserve(out_size);
for (mx_uint i = 0; i < out_size; ++i) {
outputs.push_back(NDArray(out_array[i]));
}
int cur_train_mode = prev_train_mode;
int cur_is_record = prev_is_record;
if (is_train == true) {
CHECK_EQ(MXAutogradSetIsTraining(cur_train_mode, &prev_train_mode), 0);
}
CHECK_EQ(MXAutogradSetIsRecording(cur_is_record, &prev_is_record), 0);
}
/*!
* \brief Perform a Backward operation of the Operator.
* This must be called after Forward.
* After this operation, NDArrays specified by grad_in_args_store will be
*updated accordingly.
* User is allowed to pass in an empty Array if the head node is
* loss function and head gradeitn is not needed.
*
* \param head_grads the gradient of head nodes to be backproped.
*/
void Backward(const std::vector<NDArray> &head_grads =
std::vector<NDArray>()) {
if (require_grad == true) {
if (outputs.size() == 0) {
Forward(false);
}
std::vector<NDArrayHandle> out_handles;
for (const auto &array : outputs) {
out_handles.push_back(array.GetHandle());
}
std::vector<NDArrayHandle> head_grads_;
for (auto d : head_grads) {
head_grads_.push_back(d.GetHandle());
}
if (head_grads_.size() > 0) {
CHECK_EQ(MXAutogradBackwardEx(out_handles.size(), out_handles.data(),
head_grads_.data(), 0, nullptr, 0, 0, 1,
nullptr, nullptr), 0);
} else {
CHECK_EQ(MXAutogradBackwardEx(out_handles.size(), out_handles.data(),
nullptr, 0, nullptr, 0, 0, 1,
nullptr, nullptr), 0);
}
grad_arrays.clear();
grad_arrays.reserve(arg_arrays.size());
for (const auto &array : arg_arrays) {
NDArrayHandle grad;
CHECK_EQ(MXNDArrayGetGrad(array.GetHandle(), &grad), 0);
grad_arrays.push_back(NDArray(grad));
}
}
}
// TODO(zhangchen-qinyinghua)
// To implement reshape function
void Reshape();
/*!
* \brief destructor, free the handle
*/
~Executor() { MXFreeCachedOp(handle_); }
std::vector<NDArray> arg_arrays;
std::vector<NDArray> grad_arrays;
std::vector<NDArray> aux_arrays;
std::vector<NDArray> combined_arrays;
int device_type;
int device_id;
bool require_grad;
/*!
* \brief arrays store the outputs of forward
*/
std::vector<NDArray> outputs;
std::map<std::string, NDArray> arg_dict() {
return GetDict(symbol_.ListArguments(), arg_arrays);
}
std::map<std::string, NDArray> grad_dict() {
return GetDict(symbol_.ListArguments(), grad_arrays);
}
std::map<std::string, NDArray> aux_dict() {
return GetDict(symbol_.ListAuxiliaryStates(), aux_arrays);
}
private:
Executor(const Executor &e);
Executor &operator=(const Executor &e);
CachedOpHandle handle_;
Symbol symbol_;
std::map<std::string, NDArray> GetDict(const std::vector<std::string> &names,
const std::vector<NDArray> &arrays) {
std::map<std::string, NDArray> ret;
std::set<std::string> name_set;
for (const auto &s : names) {
CHECK(name_set.find(s) == name_set.end()) << "Duplicate names detected, "
<< s;
name_set.insert(s);
}
CHECK_EQ(name_set.size(), arrays.size())
<< "names size not equal to arrays size";
for (size_t i = 0; i < names.size(); ++i) {
ret[names[i]] = arrays[i];
}
return ret;
}
};
} // namespace cpp
} // namespace mxnet
#endif // MXNET_CPP_EXECUTOR_H_