| /* |
| * Licensed to the Apache Software Foundation (ASF) under one |
| * or more contributor license agreements. See the NOTICE file |
| * distributed with this work for additional information |
| * regarding copyright ownership. The ASF licenses this file |
| * to you under the Apache License, Version 2.0 (the |
| * "License"); you may not use this file except in compliance |
| * with the License. You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, |
| * software distributed under the License is distributed on an |
| * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| * KIND, either express or implied. See the License for the |
| * specific language governing permissions and limitations |
| * under the License. |
| */ |
| |
| /*! |
| * Copyright (c) 2016 by Contributors |
| * \file caffe_blob.cc |
| * \brief Implementations of SetDataGradToBlob given various device/dimension |
| * \author Haoran Wang |
| */ |
| #include "caffe_blob.h" |
| namespace mxnet { |
| namespace op { |
| namespace caffe { |
| |
| template<> |
| void SetDataGradToBlob<mshadow::cpu, float>(caffeMemoryTypes memType, |
| std::vector<::caffe::Blob<float>*>::iterator blob, |
| std::vector<TBlob>::const_iterator itr) { |
| float *data_ptr = reinterpret_cast<float*>((*itr).dptr_); |
| if (memType == Data) |
| (*blob)->set_cpu_data(data_ptr); |
| else |
| MXCAFFEBLOB(*blob, float)->set_cpu_diff(data_ptr); |
| } |
| |
| template<> |
| void SetDataGradToBlob<mshadow::cpu, double>(caffeMemoryTypes memType, |
| std::vector<::caffe::Blob<double>*>::iterator blob, |
| std::vector<TBlob>::const_iterator itr) { |
| double *data_ptr = reinterpret_cast<double*>((*itr).dptr_); |
| if (memType == Data) |
| (*blob)->set_cpu_data(data_ptr); |
| else |
| MXCAFFEBLOB(*blob, double)->set_cpu_diff(data_ptr); |
| } |
| |
| template<> |
| void SetDataGradToBlob<mshadow::gpu, float>(caffeMemoryTypes memType, |
| std::vector<::caffe::Blob<float>*>::iterator blob, |
| std::vector<TBlob>::const_iterator itr) { |
| float *data_ptr = reinterpret_cast<float*>((*itr).dptr_); |
| if (memType == Data) |
| (*blob)->set_gpu_data(data_ptr); |
| else |
| MXCAFFEBLOB(*blob, float)->set_gpu_diff(data_ptr); |
| } |
| |
| template<> |
| void SetDataGradToBlob<mshadow::gpu, double>(caffeMemoryTypes memType, |
| std::vector<::caffe::Blob<double>*>::iterator blob, |
| std::vector<TBlob>::const_iterator itr) { |
| double *data_ptr = reinterpret_cast<double*>((*itr).dptr_); |
| if (memType == Data) |
| (*blob)->set_gpu_data(data_ptr); |
| else |
| MXCAFFEBLOB(*blob, double)->set_gpu_diff(data_ptr); |
| } |
| |
| mxnet::TShape Vector2TShape(const std::vector<int> &vec_int) { |
| std::vector<mshadow::index_t> vec; |
| for (uint32_t i = 0; i < vec_int.size(); ++i) |
| vec.push_back(vec_int[i]); |
| // 0-dim represents scalar in caffe |
| if (vec_int.size() == 0) |
| vec.push_back(1); |
| return {vec.begin(), vec.end()}; |
| } |
| |
| std::vector<int> TShape2Vector(const mxnet::TShape &tshape) { |
| std::vector<int> s; |
| for (uint32_t i =0 ; i < tshape.ndim(); ++i) |
| s.push_back(tshape[i]); |
| return s; |
| } |
| |
| } // namespace caffe |
| } // namespace op |
| } // namespace mxnet |