| /* |
| * Licensed to the Apache Software Foundation (ASF) under one |
| * or more contributor license agreements. See the NOTICE file |
| * distributed with this work for additional information |
| * regarding copyright ownership. The ASF licenses this file |
| * to you under the Apache License, Version 2.0 (the |
| * "License"); you may not use this file except in compliance |
| * with the License. You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, |
| * software distributed under the License is distributed on an |
| * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| * KIND, either express or implied. See the License for the |
| * specific language governing permissions and limitations |
| * under the License. |
| */ |
| |
| /*! |
| * Copyright (c) 2017 by Contributors |
| * \file test_op.h |
| * \brief operator unit test utility functions |
| * \author Chris Olivier |
| * |
| * These classes offer a framework for developing, testing and debugging operators |
| * in C++. They work for both CPU and GPU modes, as well as offer a timing |
| * infrastructure in order to test inidividual operator performance. |
| * |
| * Operator data can be validated against general logic, |
| * stored scalar values (which can be generated by this code from an existing operator via |
| * BasicOperatorData::dumpC(), as well as against each other (ie check that |
| * GPU, CPU, MKL, and CUDNN operators produce the same output given the same input. |
| * |
| * test_util.h: General testing utility functionality |
| * test_perf.h: Performance-related classes |
| * test_op.h: Operator-specific testing classes |
| */ |
| #ifndef TEST_OP_H_ |
| #define TEST_OP_H_ |
| |
| #include <mxnet/op_attr_types.h> |
| #include <ndarray/ndarray_function.h> |
| #include <mshadow/base.h> |
| #include <mshadow/stream_gpu-inl.h> |
| #include <atomic> |
| #include <algorithm> |
| #include <map> |
| #include <list> |
| #include <string> |
| #include <vector> |
| #include <utility> |
| #include "./test_perf.h" |
| #include "./test_util.h" |
| |
| namespace mxnet { |
| namespace test { |
| namespace op { |
| |
| #if MXNET_USE_CUDA |
| #define MXNET_CUDA_ONLY(__i$) __i$ |
| #else |
| #define MXNET_CUDA_ONLY(__i$) ((void)0) |
| #endif |
| |
| #if MXNET_USE_CUDA |
| /*! |
| * \brief Maintain the lifecycle of a GPU stream |
| */ |
| struct GPUStreamScope { |
| explicit inline GPUStreamScope(OpContext *opContext) |
| : opContext_(*opContext) { |
| CHECK_EQ(opContext_.run_ctx.stream == nullptr, true) |
| << "Invalid runtime context stream state"; |
| opContext_.run_ctx.stream = mshadow::NewStream<gpu>(true, true, opContext_.run_ctx.ctx.dev_id); |
| CHECK_EQ(opContext_.run_ctx.stream != nullptr, true) |
| << "Unable to allocate a GPU stream"; |
| } |
| inline ~GPUStreamScope() { |
| if (opContext_.run_ctx.stream) { |
| mshadow::DeleteStream<gpu>(static_cast<mshadow::Stream<gpu> *>(opContext_.run_ctx.stream)); |
| opContext_.run_ctx.stream = nullptr; |
| } |
| } |
| OpContext& opContext_; |
| }; |
| #endif // MXNET_USE_CUDA |
| |
| /*! |
| * \brief Base class for operator test-data classes |
| */ |
| template<typename DType> |
| class OperatorDataInitializer { |
| public: |
| OperatorDataInitializer() |
| : generator_(new std::mt19937()) { |
| } |
| |
| /*! |
| * \brief Fill a blob with random values |
| * \param blob Blob which to fill with random values |
| */ |
| void FillRandom(const RunContext& run_ctx, const TBlob& blob) const { |
| #pragma clang diagnostic push |
| #pragma clang diagnostic ignored "-Wabsolute-value" |
| std::uniform_real_distribution<> dis_real(-5.0, 5.0); |
| std::uniform_int_distribution<> dis_int(-128, 127); |
| test::patternFill(run_ctx, &blob, [this, &dis_real, &dis_int]() -> DType { |
| if (!std::is_integral<DType>::value) { |
| DType val; |
| do { |
| val = static_cast<DType>(dis_real(this->generator())); |
| } while (std::abs(val) < 1e-5); // If too close to zero, try again |
| return val; |
| } else { |
| DType val; |
| do { |
| val = static_cast<DType>(dis_int(this->generator())); |
| } while (!val); // If zero, try again |
| return val; |
| } |
| }); |
| #pragma clang diagnostic pop |
| } |
| |
| void FillZero(const RunContext& run_ctx, const TBlob& blob) const { |
| test::patternFill(run_ctx, &blob, []() -> DType { return DType(0); }); |
| } |
| |
| private: |
| /*! |
| * \brief mt19937 generator for random number generator |
| * \return reference to mt19937 generator object |
| */ |
| std::mt19937& generator() const { return *generator_; } |
| |
| /*! \brief Per-test generator */ |
| std::unique_ptr<std::mt19937> generator_; |
| }; |
| |
| class OperatorExecutorTiming { |
| public: |
| inline test::perf::TimingInstrument& GetTiming() { return timing_; } |
| |
| private: |
| /*! Timing instrumentation */ |
| test::perf::TimingInstrument timing_; |
| }; |
| |
| /*! \brief Top-level operator test state info structure */ |
| template<typename OperatorProp, typename OperatorExecutor> |
| struct OpInfo { |
| /*! \brief The operator data */ |
| std::shared_ptr< OperatorExecutor > executor_; |
| /*! \brief The operator prop class */ |
| std::shared_ptr<OperatorProp> prop_; |
| /*! \brief The input type(s) */ |
| std::vector<int> in_type_; |
| }; |
| |
| /*! \brief Pair of op info objects, generally for validating ops against each other */ |
| template<typename OperatorProp1, typename OperatorProp2, typename OperatorExecutor> |
| struct OpInfoPair { |
| /*! \brief Operator item 1 */ |
| test::op::OpInfo<OperatorProp1, OperatorExecutor> info_1_; |
| /*! \brief Operator item 2 */ |
| test::op::OpInfo<OperatorProp2, OperatorExecutor> info_2_; |
| }; |
| |
| /*! \brief Base validator class for validating test data */ |
| template<typename DType, typename AccReal> |
| class Validator { |
| public: |
| static inline DType ERROR_BOUND() { |
| switch (sizeof(DType)) { |
| case sizeof(mshadow::half::half_t): |
| return 0.01f; |
| default: |
| return 0.001f; |
| } |
| } |
| |
| static inline DType ErrorBound(const TBlob *blob) { |
| // Due to eps, for a small number of entries, the error will be a bit higher for one pass |
| if (blob->shape_.ndim() >= 3) { |
| return (blob->Size() / blob->shape_[1]) <= 4 ? (ERROR_BOUND() * 15) : ERROR_BOUND(); |
| } else { |
| // Probably just a vector |
| return ERROR_BOUND(); |
| } |
| } |
| |
| /*! \brief Adjusted error based upon significant digits */ |
| template<typename DTypeX> |
| static inline DType ErrorBound(const TBlob *blob, const DTypeX v1, const DTypeX v2) { |
| const DType initialErrorBound = ErrorBound(blob); |
| DType kErrorBound = initialErrorBound; // This error is based upon the range [0.1x, 0.9x] |
| DTypeX avg = static_cast<DTypeX>((fabs(v1) + fabs(v2)) / 2); |
| if (avg >= 1) { |
| uint64_t vv = static_cast<uint64_t>(avg + 0.5); |
| do { |
| kErrorBound *= 10; // shift error to the right one digit |
| } while (vv /= 10); |
| } |
| return kErrorBound; |
| } |
| |
| template<typename DTypeX> |
| static bool isNear(const DTypeX v1, const DTypeX v2, const AccReal error) { |
| return error >= fabs(v2 - v1); |
| } |
| |
| /*! \brief Convenient setpoint for macro-expanded failures */ |
| template<typename Type1, typename Type2> |
| static void on_failure(const size_t i, const size_t n, |
| const Type1 v1, const Type1 v2, const Type2 kErrorBound) { |
| LOG(WARNING) |
| << "Near test failure: at i = " << i << ", n = " |
| << n << ", kErrorBound = " << kErrorBound << std::endl |
| << std::flush; |
| } |
| |
| /*! \brief Compare blob data */ |
| static bool compare(const TBlob& b1, const TBlob& b2) { |
| if (b1.shape_ == b2.shape_) { |
| CHECK_EQ(b1.type_flag_, b2.type_flag_) << "Can't compare blobs of different data types"; |
| MSHADOW_REAL_TYPE_SWITCH(b1.type_flag_, DTypeX, { |
| const DTypeX *d1 = b1.dptr<DTypeX>(); |
| const DTypeX *d2 = b2.dptr<DTypeX>(); |
| CHECK_NE(d1, d2); // don't compare the same memory |
| for (size_t i = 0, n = b1.Size(), warningCount = 0; i < n; ++i) { |
| const DTypeX v1 = *d1++; |
| const DTypeX v2 = *d2++; |
| const DType kErrorBound = ErrorBound(&b1, v1, v2); |
| EXPECT_NEAR(v1, v2, kErrorBound); |
| if (!isNear(v1, v2, kErrorBound) && !warningCount++) { |
| on_failure(i, n, v1, v2, kErrorBound); |
| return false; |
| } |
| } |
| }); |
| return true; |
| } |
| return false; |
| } |
| |
| /*! \brief Compare blob data to a pointer to data */ |
| template<typename DTypeX> |
| static bool compare(const TBlob& b1, const DTypeX *valuePtr) { |
| const DTypeX *d1 = b1.dptr<DType>(); |
| CHECK_NE(d1, valuePtr); // don't compare the same memory |
| const DType kErrorBound = ErrorBound(&b1); |
| for (size_t i = 0, n = b1.Size(), warningCount = 0; i < n; ++i) { |
| const DTypeX v1 = *d1++; |
| const DTypeX v2 = *valuePtr++; |
| EXPECT_NEAR(v1, v2, kErrorBound); |
| if (!isNear(v1, v2, kErrorBound) && !warningCount++) { |
| on_failure(i, n, v1, v2, kErrorBound); |
| } |
| } |
| return true; |
| } |
| }; |
| |
| /*! \brief Operator Prop argument key/value pairs */ |
| typedef std::vector<std::pair<std::string, std::string> > kwargs_t; |
| |
| /*! \brief Create operator data, prop, the operator itself and init default forward input */ |
| template< |
| typename OperatorProp, |
| typename OperatorExecutor, |
| typename ...Args> |
| static test::op::OpInfo<OperatorProp, OperatorExecutor> createOpAndInfoF(const kwargs_t &kwargs, |
| Args... args) { |
| test::op::OpInfo<OperatorProp, OperatorExecutor> info; |
| info.executor_ = std::make_shared<OperatorExecutor>(args...); |
| info.prop_ = std::make_shared<OperatorProp>(); |
| info.in_type_ = { mshadow::DataType<typename OperatorExecutor::DataType>::kFlag }; |
| info.prop_->Init(kwargs); |
| info.executor_->initForward(*info.prop_, &info.in_type_); |
| return info; |
| } |
| |
| inline mxnet::ShapeVector ShapesOf(const std::vector<NDArray>& arrays) { |
| mxnet::ShapeVector res; |
| res.reserve(arrays.size()); |
| for (const NDArray& ar : arrays) { |
| res.emplace_back(ar.shape()); |
| } |
| return res; |
| } |
| |
| } // namespace op |
| } // namespace test |
| } // namespace mxnet |
| |
| #endif // TEST_OP_H_ |