blob: f75cc84b2a8f4f96b8caa451ddcfdc5267e9ef8c [file] [log] [blame]
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
package AI::MXNet::NDArray;
=head1 NAME
AI::MXNet::NDArray - Multidimensional tensor object of MXNet.
=cut
=head1 DESCRIPTION
AI::MXNet::NDArray - Imperative tensor operations on CPU/GPU
In AI::MXNet, NDArray is the core data structure for all mathematical computations.
An NDArray represents a multidimensional, fixed-size homogenous array.
If you're familiar with the PDL, you might notice some similarities.
However, NDArray is row-major, unlike the PDL that is column-major.
Like the PDL, MXNet’s NDArray enables imperative computation.
Some NDArray advandages compared to PDL:
MXNet's NDArray supports fast execution on a wide range of hardware configurations, including CPU, GPU, and multi-GPU machines.
MXNet also scales to distributed systems in the cloud.
MXNet's NDArray executes code lazily, allowing it to automatically parallelize multiple operations across the available hardware.
An NDArray is a multidimensional array of numbers with the same type.
We could represent the coordinates of a point in 3D space, e.g. [2, 1, 6] as a 1D array with shape (3).
Similarly, we could represent a 2D array.
Below, we present an array with length 2 along the first axis and length 3 along the second axis.
[[0, 1, 2]
[3, 4, 5]]
Note that here the use of 'dimension' is overloaded. When we say a 2D array, we mean an array with 2 axes, not an array with two components.
Each NDArray supports some important attributes that you'll often want to query:
$ndarray->shape: The dimensions of the array.
It is an array ref of integers indicating the length of the array along each axis.
For a matrix with $n rows and $m columns, its shape will be [$n, $m].
$ndarray->dtype: A string describing the type of its elements.
Dtype (defined in AI::MXNet::Types) is one of (float32 float64 float16 uint8 int8 int32 int64)
$ndarray->size: The total number of components in the array - equal to the product of the components of its shape.
$ndarray->context: The device on which this array is stored, represented by an object of AI::MXNet::Context class, e.g. cpu() or gpu(1).
=cut
use strict;
use warnings;
use AI::MXNet::NS;
use AI::MXNet::Base;
use AI::MXNet::NDArray::Slice;
use AI::MXNet::Context;
use Mouse;
use AI::MXNet::Function::Parameters;
use overload
'""' => \&stringify,
'+' => \&add,
'+=' => \&iadd,
'-' => \&subtract,
'-=' => \&isubtract,
'*' => \&multiply,
'*=' => \&imultiply,
'/' => \&divide,
'/=' => \&idivide,
'%' => \&modulo,
'%=' => \&imodulo,
'**' => \&power,
'==' => \&equal,
'!=' => \&not_equal,
'>' => \&greater,
'>=' => \&greater_equal,
'<' => \&lesser,
'<=' => \&lesser_equal,
'.=' => \&set,
'@{}'=> \&split_array,
'=' => sub { $_[0] };
extends 'AI::MXNet::NDArray::Base';
has 'writable' => (is => 'rw', isa => 'Int', default => 1, lazy => 1);
has 'handle' => (is => 'rw', isa => 'NDArrayHandle', required => 1);
sub DEMOLISH
{
check_call(AI::MXNetCAPI::NDArrayFree(shift->handle));
}
method STORABLE_freeze($cloning)
{
my $buf = check_call(AI::MXNetCAPI::NDArraySaveRawBytes($self->handle));
return ($buf,\ $self->writable);
}
method STORABLE_thaw($cloning, $buf, $writable)
{
my $handle = check_call(
AI::MXNetCAPI::NDArrayLoadFromRawBytes(
$buf, length($buf)
)
);
$self->handle($handle);
$self->writable($$writable);
}
method split_array(@args)
{
$self->shape->[0] > 1 ? $self->split(num_outputs => $self->shape->[0], squeeze_axis => @{ $self->shape } > 1 ? 1 : 0, axis => 0) : [$self];
}
method at(Index @indices)
{
confess("No idxs supplied") unless @indices;
my $shape = $self->shape;
my $dsize = @$shape;
my $isize = @indices;
confess("Dimensions size $dsize < indexes size $isize")
if $dsize < $isize;
confess("Dimensions size $dsize = indexes size $isize,
ndarray only supports either ->at on dimension 0
or full crop")
if $isize > 1 and $dsize != $isize;
my $i = 0;
for(zip(\@indices, $shape)) {
my ($idx, $dim_size) = @$_;
confess("Dimension $i mismatch Idx: $idx >= Dim Size: $dim_size")
if $idx >= $dim_size or ($idx + $dim_size) < 0;
++$i;
}
$i = 0;
for my $v (@indices)
{
$v += $shape->[$i] if $v < 0;
++$i;
}
return $self->_at($indices[0]) if @indices == 1;
return $self->slice(@indices);
}
method len() { $self->shape->[0] }
method slice(Slice|AdvancedSlice|InternalSlice @slices)
{
confess("No slices supplied") unless @slices;
if(grep { not ref and /^(?:begin|end|slice)$/ } @slices)
{
return $self->SUPER::slice(@slices);
}
if(ref $slices[0] eq 'ARRAY' and ref $slices[0]->[0])
{
my @indices;
my $key = $slices[0];
my $dtype = 'int32';
for my $idx_i (@{ $key })
{
if(not (blessed $idx_i and $idx_i->isa(__PACKAGE__)))
{
$idx_i = __PACKAGE__->array($idx_i, ctx=>$self->context, dtype=>$dtype);
}
else
{
$dtype = $idx_i->dtype;
}
push @indices, $idx_i;
}
my $indices = __PACKAGE__->stack(@indices);
return __PACKAGE__->gather_nd($self, $indices);
}
my $shape = $self->shape;
my $dsize = @$shape;
my $isize = @slices;
confess("Dimensions size $dsize < slices size $isize")
if $dsize < $isize;
confess("Dimensions size $dsize != slices size $isize,
ndarray only supports either ->slice on dimension 0
or full crop")
if $isize > 1 and $dsize != $isize;
my $i = -1;
@slices = map {
++$i;
ref $_ ? (@$_ == 1 ? [$_->[0], $_->[0]] : $_) : ($_ eq 'X' ? [0, $shape->[$i] - 1] : [$_, $_]);
} @slices;
for(zip(\@slices, $shape)) {
my ($slice, $dim_size) = @$_;
my ($begin, $end, $stride) = @$slice;
confess("NDArray does not support slice strides != 1")
if ($stride//0) > 1;
confess("Dimension $i mismatch slice begin : $begin >= Dim Size: $dim_size")
if $begin >= $dim_size or ($begin + $dim_size) < 0;
confess("Dimension $i mismatch slice end : $end >= Dim Size: $dim_size")
if $end >= $dim_size or ($end + $dim_size) < 0;
}
$i = 0;
my ($begin, $end) = ([], []);
for my $s (@slices)
{
$s->[0] += $shape->[$i] if $s->[0] < 0;
$s->[1] += $shape->[$i] if $s->[1] < 0;
confess("Dimension $i slice mismatch (begin $s->[0] > end $s->[1])")
if($s->[0] > $s->[1]);
push @$begin, $s->[0];
push @$end, $s->[1] + 1;
$i++;
}
return $self->_slice($begin->[0], $end->[0]) if @slices == 1;
return AI::MXNet::NDArray::Slice->new(parent => $self, begin => $begin, end => $end);
}
method set(AcceptableInput $value, $reverse=)
{
confess("set value must be defined") unless defined $value;
confess("Array is not writable") if not $self->writable;
## plain number
if(not ref $value)
{
$self->_set_value($value, out => $self);
}
# ndarray
elsif(blessed($value) and $value->isa(__PACKAGE__))
{
$value->copyto($self);
}
# slice of another ndarray
elsif(blessed($value) and $value->isa('AI::MXNet::NDArray::Slice'))
{
$value->sever->copyto($self);
}
# perl array, PDL, PDL::Matrix
else
{
$self->_sync_copyfrom($value);
}
return $self;
}
method asscalar()
{
confess("ndarray size must be 1") unless $self->size == 1;
return $self->aspdl->at(0);
## code below works happily on CPU/segfaults on GPU
#$self->wait_to_read;
#my $perl_pack_type = DTYPE_MX_TO_PERL->{$self->dtype};
#my $length = {qw/f 4 d 8 S 2 C 1 l 4/}->{$perl_pack_type};
#return
#(map {
# $perl_pack_type eq 'S' ? AI::MXNetCAPI::_half_to_float($_) : $_
# } unpack("$perl_pack_type", check_call(AI::MXNetCAPI::NDArrayGetData($self->handle, $length)))
#)[0];
}
method _sync_copyfrom(ArrayRef|PDL|PDL::Matrix $source_array)
{
my $dtype = $self->dtype;
my $pdl_type = PDL::Type->new(DTYPE_MX_TO_PDL->{ $dtype });
if(not blessed($source_array))
{
$source_array = eval {
pdl($pdl_type, $source_array);
};
confess($@) if $@;
}
if($pdl_type->numval != $source_array->type->numval)
{
my $convert_func = $pdl_type->convertfunc;
$source_array = $source_array->$convert_func;
}
$source_array = pdl($pdl_type, [@{ $source_array->unpdl } ? $source_array->unpdl->[0] : 0 ])
unless @{ $source_array->shape->unpdl };
my $pdl_shape = $source_array->shape->unpdl;
my $pdl_shape_str = join(',', ref($source_array) eq 'PDL' ? reverse @{ $pdl_shape } : @{ $pdl_shape });
my $ndary_shape_str = join(',', @{ $self->shape });
if($pdl_shape_str ne $ndary_shape_str)
{
confess("Shape inconsistant: expected $ndary_shape_str vs got $pdl_shape_str")
}
my $perl_pack_type = DTYPE_MX_TO_PERL->{$dtype};
my $ptr = $source_array->get_dataref;
## special handling for float16
if($perl_pack_type eq 'S')
{
$ptr = \( pack("S*", map { AI::MXNetCAPI::_float_to_half($_) } unpack ("f*", $$ptr)) );
}
check_call(AI::MXNetCAPI::NDArraySyncCopyFromCPU($self->handle, $$ptr, $self->size));
return $self;
}
=head2 aspdl
Returns a copied PDL array of current array.
Returns
-------
array : PDL
A copy of the array content.
=cut
method aspdl()
{
my $dtype = $self->dtype;
my $pdl_type = PDL::Type->new(DTYPE_MX_TO_PDL->{ $dtype });
my $pdl = PDL->new_from_specification($pdl_type, reverse @{ $self->shape });
my $perl_pack_type = DTYPE_MX_TO_PERL->{$dtype};
my $ptr = $pdl->get_dataref;
check_call(AI::MXNetCAPI::NDArraySyncCopyToCPU($self->handle, $$ptr, $self->size));
## special handling for float16
if($perl_pack_type eq 'S')
{
$$ptr = pack("f*", map { AI::MXNetCAPI::_half_to_float($_) } unpack("S*", $$ptr));
}
$pdl->upd_data;
return $pdl;
}
=head2 asmpdl
Returns copied PDL::Matrix objectt of current array.
Requires caller to "use PDL::Matrix" in user space.
Returns
-------
array : PDL::Matrix
A copy of array content.
=cut
method asmpdl()
{
my $dtype = $self->dtype;
my $pdl_type = PDL::Type->new(DTYPE_MX_TO_PDL->{ $dtype });
my $pdl = PDL::Matrix->new_from_specification($pdl_type, @{ $self->shape });
my $perl_pack_type = DTYPE_MX_TO_PERL->{$dtype};
my $ptr = $pdl->get_dataref;
check_call(AI::MXNetCAPI::NDArraySyncCopyToCPU($self->handle, $$ptr, $self->size));
## special handling for float16
if($perl_pack_type eq 'S')
{
$$ptr = pack("f*", map { AI::MXNetCAPI::_half_to_float($_) } unpack("S*", $$ptr));
}
$pdl->upd_data;
return $pdl;
}
=head2 _slice
Returns sliced NDArray that shares memory with the current one.
Parameters
----------
start : int
Starting index of slice.
stop : int
Finishing index of slice.
=cut
method _slice (
Index $start,
Index $stop
)
{
confess("start $start > stop $stop") if $start > $stop;
my $handle = check_call(
AI::MXNetCAPI::NDArraySlice(
$self->handle,
$start,
$stop
)
);
return __PACKAGE__->_ndarray_cls($handle, $self->writable);
}
=head2 _at
Returns a sub NDArray that shares memory with current one.
Parameters
----------
idx : int
index of the sub array.
=cut
method _at(Index $idx)
{
my $handle = check_call(
AI::MXNetCAPI::NDArrayAt(
$self->handle, $idx >=0 ? $idx : $self->shape->[0] + $idx
)
);
return __PACKAGE__->_ndarray_cls($handle, $self->writable);
}
=head2 reshape
Returns a **view** of this array with a new shape without altering any data.
One shape dimension can be -1. In this case, the value is inferred
from the length of the array and remaining dimensions.
Parameters
----------
$new_shape : Shape
new shape of NDArray
:$reverse : bool, default 0
If true then the special values are inferred from right to left.
=cut
method reshape(ArrayRef[Int] $new_shape, Bool :$reverse=0)
{
my $handle = check_call(
AI::MXNetCAPI::NDArrayReshape64(
$self->handle,
scalar(@$new_shape),
$new_shape,
$reverse
)
);
return __PACKAGE__->_ndarray_cls($handle, $self->writable);
}
=head2 ndim
Returns the number of dimensions of this array.
=cut
method ndim()
{
scalar(@{ $self->shape });
}
=head2 moveaxis
Moves the 'source' axis into the 'destination' position
while leaving the other axes in their original order
Parameters
----------
source : int
Original position of the axes to move.
destination : int
Destination position for each of the original axes.
Returns
-------
result :NDArray
Array with moved axes.
Examples
--------
> $X = mx->nd->array([[1, 2, 3],
[4, 5, 6]]);
> print Dumper($X->moveaxis(0, 1)->shape)
> [3, 2]
=cut
method moveaxis(Int $source, Int $dest)
{
my @axes = 0..$self->ndim-1;
$source += @axes if $source < 0;
$dest += @axes if $dest < 0;
assert($source < @axes);
assert($dest < @axes);
my ($to_move) = splice(@axes, $source, 1);
splice(@axes, $dest, 0, $to_move);
return __PACKAGE__->transpose($self, \@axes);
}
=head2 broadcast_to
Broadcasting the current NDArray into the given shape.
Parameters
---------
Shape $shape : the shape to broadcast
=cut
method broadcast_to(Shape $shape)
{
my $cur_shape = $self->shape;
my $err_str = "operands could not be broadcast together with remapped shapes"
."[original->remapped]: [@$cur_shape] and requested shape [@$shape]";
if(@$shape < @$cur_shape)
{
confess($err_str);
}
@$cur_shape = ((1)x(@$shape - @$cur_shape), @$cur_shape);
my $cur_shape_arr = pdl($cur_shape);
my $broadcasting_axes = ($cur_shape_arr != pdl($shape))->which->unpdl;
if (grep { $cur_shape->[$_] != 1 } @$broadcasting_axes)
{
confess($err_str);
}
if(join(',',@$cur_shape) ne join(',',@{ $self->shape }))
{
return __PACKAGE__->SUPER::broadcast_to($self->reshape($cur_shape),{ shape => $shape });
}
else
{
return __PACKAGE__->SUPER::broadcast_to($self, { shape => $shape });
}
}
=head2 wait_to_read
Block until all pending write operations on the NDArray are finished.
This function will return when all the pending writes to the current
NDArray are finished. There can be pending reads going on when the
function returns.
=cut
method wait_to_read()
{
check_call(AI::MXNetCAPI::NDArrayWaitToRead($self->handle));
}
=head2 shape
Get the shape of current NDArray.
Returns
-------
an array ref representing the shape of current ndarray
=cut
method shape()
{
return scalar(check_call(AI::MXNetCAPI::NDArrayGetShapeEx($self->handle)));
}
=head2 size
Number of elements in the array.
=cut
method size(Shape|Undef $shape=)
{
my $size = 1;
map { $size *= $_ } @{ $shape//$self->shape };
return $size;
}
=head2 context
The context of the NDArray.
Returns
-------
$context : AI::MXNet::Context
=cut
method context()
{
my ($dev_type_id, $dev_id) = check_call(
AI::MXNetCAPI::NDArrayGetContext($self->handle)
);
return AI::MXNet::Context->new(
device_type => AI::MXNet::Context::devtype2str->{ $dev_type_id },
device_id => $dev_id
);
}
=head2 dtype
The data type of current NDArray.
Returns
-------
a data type string ('float32', 'float64', 'float16', 'uint8', 'int32')
representing the data type of the ndarray.
'float32' is the default dtype for the ndarray class.
=cut
method dtype()
{
my $dtype = check_call(
AI::MXNetCAPI::NDArrayGetDType(
$self->handle
)
);
return DTYPE_MX_TO_STR->{ $dtype };
}
=head2 copyto
Copy the content of current array to another entity.
When another entity is the NDArray, the content is copied over.
When another entity is AI::MXNet::Context, a new NDArray in the context
will be created.
Parameters
----------
other : NDArray or Context
Target NDArray or context we want to copy data to.
Returns
-------
dst : NDArray
=cut
method copyto(AI::MXNet::Context|AI::MXNet::NDArray $other)
{
if(blessed($other) and $other->isa('AI::MXNet::Context'))
{
my $hret = __PACKAGE__->empty(
$self->shape,
ctx => $other,
dtype => $self->dtype
);
return __PACKAGE__->_copyto($self, { out => $hret });
}
else
{
if ($other->handle eq $self->handle)
{
Carp::cluck('copy an array to itself, is it intended?');
}
return __PACKAGE__->_copyto($self, { out => $other });
}
}
=head2 copy
Makes a copy of the current ndarray in the same context
Returns
------
$copy : NDArray
=cut
method copy()
{
return $self->copyto($self->context);
}
## alias for PDL::NiceSlice
*sever = \&copy;
=head2 T
Get transpose of the NDArray.
Works only on 2-D matrices.
=cut
method T()
{
if (@{$self->shape} > 2)
{
confess('Only 2D matrix is allowed to be transposed');
}
return __PACKAGE__->transpose($self);
}
=head2 astype
Returns copied ndarray of current array with the specified type.
Parameters
----------
$dtype : Dtype
Returns
-------
$array : ndarray
A copy of the array content.
=cut
method astype(Dtype $dtype)
{
my $res = __PACKAGE__->empty($self->shape, ctx => $self->context, dtype => $dtype);
$self->copyto($res);
return $res;
}
=head2 as_in_context
Returns an NDArray in the target context.
If the array is already in that context, self is returned. Otherwise, a copy is
made.
Parameters
----------
context : AI::MXNet::Context
The target context we want the return value to live in.
Returns
-------
A copy or self as an NDArray in the target context.
=cut
method as_in_context(AI::MXNet::Context $context)
{
return $self if $self->context == $context;
return $self->copyto($context);
}
=head2 onehot_encode
One hot encoding indices into matrix out.
Parameters
----------
indices: NDArray
An NDArray containing indices of the categorical features.
out: NDArray
The result of the encoding.
Returns
-------
$out: NDArray
=cut
method onehot_encode(AI::MXNet::NDArray $indices, AI::MXNet::NDArray $out)
{
return __PACKAGE__->_onehot_encode($indices, $out, { out => $out });
}
sub _ufunc_helper
{
my ($lhs, $rhs, $fn_array, $lfn_scalar, $rfn_scalar, $reverse) = @_;
($rhs, $lhs) = ($lhs, $rhs) if $reverse and $rfn_scalar;
if(not ref $lhs)
{
if(not $rfn_scalar)
{
return __PACKAGE__->can($lfn_scalar)->(__PACKAGE__, $rhs, $lhs);
}
else
{
return __PACKAGE__->can($rfn_scalar)->(__PACKAGE__, $rhs, $lhs);
}
}
elsif(not ref $rhs)
{
return __PACKAGE__->can($lfn_scalar)->(__PACKAGE__, $lhs, $rhs);
}
else
{
return __PACKAGE__->can($fn_array)->(__PACKAGE__, $lhs, $rhs);
}
}
method stringify($other=, $reverse=)
{
sprintf("<%s %s @%s>", ref($self), join('x', @{ $self->shape }), $self->context);
}
method iadd(AI::MXNet::NDArray|Num $other, $reverse=)
{
confess('trying to add to a readonly NDArray') unless $self->writable;
return ref $other
? __PACKAGE__->broadcast_add($self, $other, { out => $self })
: __PACKAGE__->_plus_scalar($self, $other, { out => $self })
}
method add(AI::MXNet::NDArray|Num $other, $reverse=)
{
return _ufunc_helper(
$self,
$other,
qw/broadcast_add _plus_scalar/
);
}
method subtract(AI::MXNet::NDArray|Num $other, $reverse=)
{
return _ufunc_helper(
$self,
$other,
qw/broadcast_sub _minus_scalar _rminus_scalar/,
$reverse
);
}
method isubtract(AI::MXNet::NDArray|Num $other, $reverse=)
{
confess('trying to add to a readonly NDArray') unless $self->writable;
return ref $other
? __PACKAGE__->broadcast_sub($self, $other, { out => $self })
: __PACKAGE__->_minus_scalar($self, $other, { out => $self })
}
method multiply(AI::MXNet::NDArray|Num $other, $reverse=)
{
return _ufunc_helper(
$self,
$other,
qw/broadcast_mul _mul_scalar/
);
}
method imultiply(AI::MXNet::NDArray|Num $other, $reverse=)
{
confess('trying to add to a readonly NDArray') unless $self->writable;
return ref $other
? __PACKAGE__->broadcast_mul($self, $other, { out => $self })
: __PACKAGE__->_mul_scalar($self, $other, { out => $self })
}
method divide(AI::MXNet::NDArray|Num $other, $reverse=)
{
return _ufunc_helper(
$self,
$other,
qw/broadcast_div _div_scalar _rdiv_scalar/,
$reverse
);
}
method idivide(AI::MXNet::NDArray|Num $other, $reverse=)
{
confess('trying to add to a readonly NDArray') unless $self->writable;
return ref $other
? __PACKAGE__->broadcast_div($self, $other, { out => $self })
: __PACKAGE__->_div_scalar($self, $other, { out => $self })
}
method power(AI::MXNet::NDArray|Num $other, $reverse=)
{
return _ufunc_helper(
$self,
$other,
qw/broadcast_power _power_scalar _rpower_scalar/,
$reverse
);
}
method maximum(AI::MXNet::NDArray|Num $other)
{
return _ufunc_helper(
$self,
$other,
qw/broadcast_maximum _maximum_scalar/
);
}
method minimum(AI::MXNet::NDArray|Num $other)
{
return _ufunc_helper(
$self,
$other,
qw/broadcast_minimum _minimum_scalar/
);
}
method equal(AI::MXNet::NDArray|Num $other, $reverse=)
{
return _ufunc_helper(
$self,
$other,
qw/broadcast_equal _equal_scalar/
);
}
method not_equal(AI::MXNet::NDArray|Num $other, $reverse=)
{
return _ufunc_helper(
$self,
$other,
qw/broadcast_not_equal _not_equal_scalar/
);
}
method greater(AI::MXNet::NDArray|Num $other, $reverse=)
{
return _ufunc_helper(
$self,
$other,
qw/broadcast_greater _greater_scalar _lesser_scalar/,
$reverse
);
}
method greater_equal(AI::MXNet::NDArray|Num $other, $reverse=)
{
return _ufunc_helper(
$self,
$other,
qw/broadcast_greater_equal _greater_equal_scalar _lesser_equal_scalar/,
$reverse
);
}
method lesser(AI::MXNet::NDArray|Num $other, $reverse=)
{
return _ufunc_helper(
$self,
$other,
qw/broadcast_lesser _lesser_scalar _greater_scalar/,
$reverse
);
}
method lesser_equal(AI::MXNet::NDArray|Num $other, $reverse=)
{
return _ufunc_helper(
$self,
$other,
qw/broadcast_lesser_equal _lesser_equal_scalar _greater_equal_scalar/,
$reverse
);
}
method true_divide(AI::MXNet::NDArray|Num $other, $reverse=)
{
return $self->divide($other, $reverse);
}
method modulo(AI::MXNet::NDArray|Num $other, $reverse=)
{
return _ufunc_helper(
$self,
$other,
qw/broadcast_mod _mod_scalar _rmod_scalar/,
$reverse
);
}
method imodulo(AI::MXNet::NDArray|Num $other, $reverse=)
{
confess('trying to modulo to a readonly NDArray') unless $self->writable;
return ref $other
? __PACKAGE__->broadcast_mod($self, $other, { out => $self })
: __PACKAGE__->_mod_scalar($self, $other, { out => $self })
}
=head2 empty
Creates an empty uninitialized NDArray, with the specified shape.
Parameters
----------
$shape : Shape
shape of the NDArray.
:$ctx : AI::MXNet::Context, optional
The context of the NDArray, defaults to current default context.
:$dtype : Dtype, optional
The dtype of the NDArray, defaults to 'float32'.
:$stype: Stype, optional
The stype of the NDArray, defaults to 'default'
Returns
-------
out: Array
The created NDArray.
=cut
method empty(Shape $shape, AI::MXNet::Context :$ctx=AI::MXNet::Context->current_ctx, Dtype :$dtype='float32', Stype :$stype='default')
{
if($stype ne 'default')
{
return AI::MXNet::NDArray::Sparse->empty($stype, $shape, ctx => $ctx, dtype => $dtype);
}
return __PACKAGE__->new(
handle => _new_alloc_handle(
$shape,
$ctx,
0,
DTYPE_STR_TO_MX->{$dtype}
)
);
}
=head2 zeros
Creates a new NDArray filled with 0, with specified shape.
Parameters
----------
$shape : Shape
shape of the NDArray.
:$ctx : AI::MXNet::Context, optional
The context of the NDArray, defaults to current default context.
:$dtype : Dtype, optional
The dtype of the NDArray, defaults to 'float32'.
:$stype: Stype, optional
The stype of the NDArray, defaults to 'default'
Returns
-------
out: Array
The created NDArray.
=cut
method zeros(
Shape $shape,
AI::MXNet::Context :$ctx=AI::MXNet::Context->current_ctx,
Dtype :$dtype='float32',
Maybe[AI::MXNet::NDArray] :$out=,
Maybe[Str] :$name=,
Maybe[Str] :$__layout__=,
Stype :$stype='default'
)
{
if($stype ne 'default')
{
return AI::MXNet::NDArray::Sparse->zeros($stype, $shape, ctx => $ctx, dtype => $dtype, out => $out);
}
return __PACKAGE__->_zeros({ shape => $shape, ctx => "$ctx", dtype => $dtype, ($out ? (out => $out) : ()) });
}
=head2 ones
Creates a new NDArray filled with 1, with specified shape.
Parameters
----------
$shape : Shape
shape of the NDArray.
:$ctx : AI::MXNet::Context, optional
The context of the NDArray, defaults to current default context.
:$dtype : Dtype, optional
The dtype of the NDArray, defaults to 'float32'.
Returns
-------
out: Array
The created NDArray.
=cut
method ones(
Shape $shape,
AI::MXNet::Context :$ctx=AI::MXNet::Context->current_ctx,
Dtype :$dtype='float32',
Maybe[AI::MXNet::NDArray] :$out=,
Maybe[Str] :$name=,
Maybe[Str] :$__layout__=,
)
{
return __PACKAGE__->_ones({ shape => $shape, ctx => "$ctx", dtype => $dtype, ($out ? (out => $out) : ()) });
}
=head2 full
Creates a new NDArray filled with given value, with specified shape.
Parameters
----------
$shape : Shape
shape of the NDArray.
val : float or int
The value to be filled with.
:$ctx : AI::MXNet::Context, optional
The context of the NDArray, defaults to current default context.
:$dtype : Dtype, optional
The dtype of the NDArray, defaults to 'float32'.
Returns
-------
out: Array
The created NDArray.
=cut
method full(
Shape $shape, Num $val,
AI::MXNet::Context :$ctx=AI::MXNet::Context->current_ctx,
Dtype :$dtype='float32', Maybe[AI::MXNet::NDArray] :$out=,
Maybe[Str] :$name=,
Maybe[Str] :$__layout__=
)
{
return __PACKAGE__->_set_value({ src => $val, out => $out ? $out : __PACKAGE__->empty($shape, ctx => $ctx, dtype => $dtype) });
}
=head2 array
Creates a new NDArray that is a copy of the source_array.
Parameters
----------
$source_array : AI::MXNet::NDArray PDL, PDL::Matrix, Array ref in PDL::pdl format
Source data to create NDArray from.
:$ctx : AI::MXNet::Context, optional
The context of the NDArray, defaults to current default context.
:$dtype : Dtype, optional
The dtype of the NDArray, defaults to 'float32'.
Returns
-------
out: Array
The created NDArray.
=cut
method array(PDL|PDL::Matrix|PDL::CCS::Nd|ArrayRef|AI::MXNet::NDArray $source_array, AI::MXNet::Context :$ctx=AI::MXNet::Context->current_ctx, Dtype :$dtype='float32')
{
if(blessed $source_array and $source_array->isa('AI::MXNet::NDArray'))
{
return AI::MXNet::NDArray::Sparse->array($source_array, ctx => $ctx, dtype => $dtype) unless $source_array->stype eq 'default';
my $arr = __PACKAGE__->empty($source_array->shape, ctx => $ctx, dtype => $dtype);
$arr .= $source_array;
return $arr;
}
elsif(blessed $source_array and $source_array->isa('PDL::CCS::Nd'))
{
return AI::MXNet::NDArray::Sparse->array($source_array, ctx => $ctx, dtype => $dtype);
}
my $pdl_type = PDL::Type->new(DTYPE_MX_TO_PDL->{ $dtype });
if(not blessed($source_array))
{
$source_array = eval {
pdl($pdl_type, $source_array);
};
confess($@) if $@;
}
$source_array = pdl($pdl_type, [@{ $source_array->unpdl } ? $source_array->unpdl->[0] : 0 ]) unless @{ $source_array->shape->unpdl };
my $shape = $source_array->shape->unpdl;
my $arr = __PACKAGE__->empty([ref($source_array) eq 'PDL' ? reverse @{ $shape } : @{ $shape }], ctx => $ctx, dtype => $dtype );
$arr .= $source_array;
return $arr;
}
=head2 concatenate
Concatenates an array ref of NDArrays along the first dimension.
Parameters
----------
$arrays : array ref of NDArrays
Arrays to be concatenate. They must have identical shape except
for the first dimension. They also must have the same data type.
:$axis=0 : int
The axis along which to concatenate.
:$always_copy=1 : bool
Default is 1. When not 1, if the arrays only contain one
NDArray, that element will be returned directly, avoid copying.
Returns
-------
An NDArray in the same context as $arrays->[0]->context.
=cut
method concatenate(ArrayRef[AI::MXNet::NDArray] $arrays, Index :$axis=0, :$always_copy=1)
{
confess("no arrays provided") unless @$arrays > 0;
if(not $always_copy and @$arrays == 1)
{
return $arrays->[0];
}
my $shape_axis = $arrays->[0]->shape->[$axis];
my $shape_rest1 = [@{ $arrays->[0]->shape }[0..($axis-1)]];
my $shape_rest2 = [@{ $arrays->[0]->shape }[($axis+1)..(@{ $arrays->[0]->shape }-1)]];
my $dtype = $arrays->[0]->dtype;
my $i = 1;
for my $arr (@{ $arrays }[1..(@{ $arrays }-1)])
{
$shape_axis += $arr->shape->[$axis];
my $arr_shape_rest1 = [@{ $arr->shape }[0..($axis-1)]];
my $arr_shape_rest2 = [@{ $arr->shape }[($axis+1)..(@{ $arr->shape }-1)]];
confess("first array $arrays->[0] and $i array $arr do not match")
unless join(',',@$arr_shape_rest1) eq join(',',@$shape_rest1);
confess("first array $arrays->[0] and $i array $arr do not match")
unless join(',',@$arr_shape_rest2) eq join(',',@$shape_rest2);
confess("first array $arrays->[0] and $i array $arr dtypes do not match")
unless join(',',@$arr_shape_rest2) eq join(',',@$shape_rest2);
$i++;
}
my $ret_shape = [@$shape_rest1, $shape_axis, @$shape_rest2];
my $ret = __PACKAGE__->empty($ret_shape, ctx => $arrays->[0]->context, dtype => $dtype);
my $idx = 0;
my $begin = [(0)x@$ret_shape];
my $end = [@$ret_shape];
for my $arr (@$arrays)
{
if ($axis == 0)
{
$ret->slice([$idx,($idx+$arr->shape->[0]-1)]) .= $arr;
}
else
{
$begin->[$axis] = $idx;
$end->[$axis] = $idx+$arr->shape->[$axis];
__PACKAGE__->_crop_assign(
$ret, $arr,
{
out => $ret,
begin => $begin,
end => $end
}
);
}
$idx += $arr->shape->[$axis];
}
return $ret
}
=head2 arange
Similar function in the MXNet ndarray as numpy.arange
See Also https://docs.scipy.org/doc/numpy/reference/generated/numpy.arange.html.
Parameters
----------
:$start=0 : number, optional
Start of interval. The interval includes this value. The default start value is 0.
:$stop= : number, optional
End of interval. The interval does not include this value.
:$step=1 : number, optional
Spacing between the values
:$repeat=1 : number, optional
The repeating time of all elements.
E.g repeat=3, the element a will be repeated three times --> a, a, a.
:$infer_range=0 : Bool
When set to 1, infer stop position from start, step, repeat, and
output tensor size.
:$ctx : Context, optional
The context of the NDArray, defaultw to current default context.
:$dtype : data type, optional
The value type of the NDArray, defaults to float32
Returns
-------
$out : NDArray
The created NDArray
=cut
method arange(Index :$start=0, Maybe[Index] :$stop=, Index :$step=1, Index :$repeat=1, Bool :$infer_range=0,
AI::MXNet::Context :$ctx=AI::MXNet::Context->current_ctx, Dtype :$dtype='float32')
{
return __PACKAGE__->_arange({
start => $start,
(defined $stop ? (stop => $stop) : ()),
step => $step,
repeat => $repeat,
dtype => $dtype,
infer_range => $infer_range,
ctx => "$ctx"
});
}
=head2 load
Loads ndarrays from a binary file.
You can also use Storable to do the job if you only work with Perl.
The advantage of load/save is the file is language agnostic.
This means the file saved using save can be loaded by other language binding of mxnet.
You also get the benefit being able to directly load/save from cloud storage(S3, HDFS)
Parameters
----------
fname : str
The name of the file.Can be S3 or HDFS address (remember built with S3 support).
Example of fname:
- `s3://my-bucket/path/my-s3-ndarray`
- `hdfs://my-bucket/path/my-hdfs-ndarray`
- `/path-to/my-local-ndarray`
Returns
-------
$out : array ref of NDArrays or hash ref with NDArrays
=cut
method load(Str $filename)
{
my ($handles, $names) = check_call(AI::MXNetCAPI::NDArrayLoad($filename));
if (not @$names)
{
return [map { __PACKAGE__->_ndarray_cls($_) } @$handles];
}
else
{
my $n = @$names;
my $h = @$handles;
confess("Handles [$h] and names [$n] count mismatch") unless $h == $n;
my %ret;
@ret{ @$names } = map { __PACKAGE__->_ndarray_cls($_) } @$handles;
return \%ret;
}
}
=head2 load_frombuffer
Loads an array dictionary or list from a buffer
See more details in 'save'.
Parameters
----------
buf : str
Binary string containing contents of a file.
Returns
-------
array ref of AI::MXNet::NDArray, AI::MXNet::NDArrayRowSparseNDArray or AI::MXNet::NDArray::CSR, or
hash ref of AI::MXNet::NDArray, AI::MXNet::NDArrayRowSparseNDArray or AI::MXNet::NDArray::CSR
Loaded data.
=cut
method load_frombuffer(Str $buf)
{
my ($handles, $names) = check_call(AI::MXNetCAPI::NDArrayLoadFromBuffer($buf, length($buf)));
if (not @$names)
{
return [map { __PACKAGE__->_ndarray_cls($_) } @$handles];
}
else
{
my $n = @$names;
my $h = @$handles;
confess("Handles [$h] and names [$n] count mismatch") unless $h == $n;
my %ret;
@ret{ @$names } = map { __PACKAGE__->_ndarray_cls($_) } @$handles;
return \%ret;
}
}
=head2 save
Save array ref of NDArray or hash of str->NDArray to a binary file.
You can also use Storable to do the job if you only work with Perl.
The advantage of load/save is the file is language agnostic.
This means the file saved using save can be loaded by other language binding of mxnet.
You also get the benefit being able to directly load/save from cloud storage(S3, HDFS)
Parameters
----------
fname : str
The name of the file.Can be S3 or HDFS address (remember built with S3 support).
Example of fname:
- `s3://my-bucket/path/my-s3-ndarray`
- `hdfs://my-bucket/path/my-hdfs-ndarray`
- `/path-to/my-local-ndarray`
$data : array ref of NDArrays or hash ref of NDArrays
The data to be saved.
=cut
method save(Str $filename, ArrayRef[AI::MXNet::NDArray]|HashRef[AI::MXNet::NDArray] $data)
{
my $handles = [];
my $names = [];
if(ref $data eq 'HASH')
{
for my $name (keys %$data)
{
push @$names, $name;
push @$handles, $data->{ $name }->handle;
}
}
else
{
@$handles = map { $_->handle } @$data;
}
check_call(
AI::MXNetCAPI::NDArraySave(
$filename,
scalar(@$handles),
$handles,
$names
)
);
}
=head2 imdecode
Decode an image from string. Requires OpenCV to work.
Parameters
----------
$str_img : str
binary image data
:$clip_rect : iterable of 4 int
clip decoded image to rectangle (x0, y0, x1, y1)
:$out= : Maybe[NDArray]
output buffer. can be 3 dimensional (c, h, w) or 4 dimensional (n, c, h, w)
:$index : int
output decoded image to i-th slice of 4 dimensional buffer
:$channels=3 : int
number of channels to output. Decode to grey scale when channels = 1.
$mean= : Maybe[NDArray]
subtract mean from decode image before outputting.
=cut
method imdecode($str_img, ArrayRef[Int] :$clip_rect=[0, 0, 0, 0],
Maybe[AI::MXNet::NDArray] :$out=, Int :$index=0, Int :$channels=3, Maybe[AI::MXNet::NDArray] :$mean=)
{
return __PACKAGE__->_imdecode(
$mean//__PACKAGE__->_new_empty_handle(),
$index,
@$clip_rect,
$channels,
length($str_img),
{ str_img => $str_img, ($out ? (out => $out) : ()) }
);
}
=head2 _new_empty_handle
Returns a new empty handle.
Empty handle can be used to hold result
Returns
-------
a new empty ndarray handle
=cut
sub _new_empty_handle
{
my $hdl = check_call(AI::MXNetCAPI::NDArrayCreateNone());
return $hdl;
}
=head2 _new_alloc_handle
Returns a new handle with specified shape and context.
Empty handle is only used to hold results
Returns
-------
a new empty ndarray handle
=cut
func _new_alloc_handle($shape, $ctx, $delay_alloc, $dtype)
{
my $hdl = check_call(
AI::MXNetCAPI::NDArrayCreateEx(
$shape,
scalar(@$shape),
$ctx->device_type_id,
$ctx->device_id,
$delay_alloc,
$dtype
)
);
return $hdl;
}
method _new_from_shared_mem($shared_pid, $shared_id, $shape, $dtype)
{
my $hdl = check_call(
AI::MXNetCAPI::NDArrayCreateFromSharedMemEx(
$shared_pid,
$shared_id,
$shape,
scalar(@$shape),
DTYPE_STR_TO_MX->{$dtype}
)
);
return $hdl;
}
=head2 tostype
Return a copy of the array with chosen storage type.
Returns
-------
AI::MXNet::NDArray or AI::MXNet::NDArray::CSR or AI::MXNet::NDArray::RowSparse
A copy of the array with the chosen storage stype
=cut
method tostype(Stype $stype)
{
return $self->cast_storage(stype => $stype);
}
=head2 waitall
Wait for all async operations to finish in MXNet.
This function is used for benchmarks only.
=cut
method waitall()
{
check_call(AI::MXNetCAPI::NDArrayWaitAll());
}
=head2 _fresh_grad
Parameters:
----------
Maybe[Bool] $state=
Whether this array's corresponding gradient array
(registered via `autograd->mark_variables`) has been
updated by `autograd->backward` since last reset.
`_fresh_grad` need to be manually set to False
after consuming gradient (usually after updating this
array).
=cut
method _fresh_grad(Maybe[Bool] $state=)
{
if(defined $state)
{
check_call(AI::MXNetCAPI::NDArraySetGradState($self->handle, $state));
return $state;
}
else
{
return scalar(check_call(AI::MXNetCAPI::NDArrayGetGradState($self->handle)));
}
}
=head2 detach
Returns a new NDArray, detached from the current graph.
=cut
method detach()
{
my $handle = check_call(AI::MXNetCAPI::NDArrayDetach($self->handle));
return __PACKAGE__->_ndarray_cls($handle);
}
=head2 attach_grad
Attach a gradient buffer to this NDArray, so that `backward`
can compute gradient with respect to it.
Parameters
----------
GradReq :$grad_req='write' : {'write', 'add', 'null'}
How gradient will be accumulated.
- 'write': gradient will be overwritten on every backward.
- 'add': gradient will be added to existing value on every backward.
- 'null': do not compute gradient for this NDArray.
Maybe[Str] :$stype= : str, optional
The storage type of the gradient array. Defaults to the same stype of this NDArray.
=cut
method attach_grad(GradReq :$grad_req='write', Maybe[Str] :$stype=)
{
my $grad;
if(defined $stype)
{
$grad = __PACKAGE__->zeros($self->shape, stype => $stype);
}
else
{
$grad = $self->zeros_like;
}
$grad_req = GRAD_REQ_MAP->{$grad_req};
check_call(
AI::MXNetCAPI::AutogradMarkVariables(
1,
[$self->handle],
[$grad_req],
[$grad->handle]
)
);
}
=head2 grad
Returns gradient buffer attached to this NDArray.
=cut
method grad()
{
my $handle = check_call(AI::MXNetCAPI::NDArrayGetGrad($self->handle));
return undef unless defined $handle;
return __PACKAGE__->_ndarray_cls($handle);
}
=head2 backward
Compute the gradients of this NDArray w.r.t variables.
Parameters
----------
:$out_grad= : NDArray, optional
Gradient with respect to head.
:$retain_graph=0 : bool, optional
Whether to retain the computaion graph for another backward
pass on the same graph. By default the computaion history
is cleared.
:$train_mode=1 : bool, optional
Whether to compute gradient for training or inference.
=cut
method backward(Maybe[AI::MXNet::NDArray] :$out_grad=, Bool :$retain_graph=0, Bool :$train_mode=1)
{
check_call(
AI::MXNetCAPI::AutogradBackwardEx(
1,
[$self->handle],
[defined $out_grad ? $out_grad->handle : undef],
0,
[],
$retain_graph,
0,
$train_mode
)
)
}
method CachedOp(@args) { AI::MXNet::CachedOp->new(@args) }
method histogram(@args) { __PACKAGE__->_histogram(@args%2 ? ('data', @args) : @args) }
my $lvalue_methods = join "\n", map {"use attributes 'AI::MXNet::NDArray', \\&AI::MXNet::NDArray::$_, 'lvalue';"}
qw/at slice aspdl asmpdl reshape copy sever T astype as_in_context copyto empty zero ones full
array/;
eval << "EOV" if ($^V and $^V >= 5.006007);
{
no warnings qw(misc);
$lvalue_methods
}
EOV
sub contrib { 'AI::MXNet::Contrib::NDArray' }
sub random { 'AI::MXNet::Random' }
sub sparse { 'AI::MXNet::NDArray::Sparse' }
sub linalg { 'AI::MXNet::LinAlg::NDArray' }
sub image { 'AI::MXNet::Image::NDArray' }
__PACKAGE__->meta->make_immutable;