| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, |
| # software distributed under the License is distributed on an |
| # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| # KIND, either express or implied. See the License for the |
| # specific language governing permissions and limitations |
| # under the License. |
| """Create the helper functions to mnist dataset for Caffe operators in MXNet""" |
| import mxnet as mx |
| from mxnet.test_utils import get_mnist_ubyte |
| |
| |
| def get_iterator(data_shape, use_caffe_data): |
| """Generate the iterator of mnist dataset""" |
| def get_iterator_impl_mnist(args, kv): |
| """return train and val iterators for mnist""" |
| # download data |
| get_mnist_ubyte() |
| flat = False if len(data_shape) != 1 else True |
| |
| train = mx.io.MNISTIter( |
| image="data/train-images-idx3-ubyte", |
| label="data/train-labels-idx1-ubyte", |
| input_shape=data_shape, |
| batch_size=args.batch_size, |
| shuffle=True, |
| flat=flat, |
| num_parts=kv.num_workers, |
| part_index=kv.rank) |
| |
| val = mx.io.MNISTIter( |
| image="data/t10k-images-idx3-ubyte", |
| label="data/t10k-labels-idx1-ubyte", |
| input_shape=data_shape, |
| batch_size=args.batch_size, |
| flat=flat, |
| num_parts=kv.num_workers, |
| part_index=kv.rank) |
| |
| return (train, val) |
| |
| def get_iterator_impl_caffe(args, kv): |
| flat = False if len(data_shape) != 1 else True |
| train = mx.io.CaffeDataIter( |
| prototxt= |
| 'layer { \ |
| name: "mnist" \ |
| type: "Data" \ |
| top: "data" \ |
| top: "label" \ |
| include { \ |
| phase: TRAIN \ |
| } \ |
| transform_param { \ |
| scale: 0.00390625 \ |
| } \ |
| data_param { \ |
| source: "mnist_train_lmdb" \ |
| batch_size: 64 \ |
| backend: LMDB \ |
| } \ |
| }', |
| flat=flat, |
| num_examples=60000 |
| # float32 is the default, so left out here in order to illustrate |
| ) |
| |
| val = mx.io.CaffeDataIter( |
| prototxt= |
| 'layer { \ |
| name: "mnist" \ |
| type: "Data" \ |
| top: "data" \ |
| top: "label" \ |
| include { \ |
| phase: TEST \ |
| } \ |
| transform_param { \ |
| scale: 0.00390625 \ |
| } \ |
| data_param { \ |
| source: "mnist_test_lmdb" \ |
| batch_size: 100 \ |
| backend: LMDB \ |
| } \ |
| }', |
| flat=flat, |
| num_examples=10000, |
| dtype="float32" # float32 is the default |
| ) |
| |
| return train, val |
| |
| if use_caffe_data: |
| return get_iterator_impl_caffe |
| else: |
| return get_iterator_impl_mnist |