blob: 1a3df71d3e54d862cf04af00c81973f2c2b3907c [file] [log] [blame]
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""Convert caffe mean
"""
import argparse
import numpy as np
import mxnet as mx
import caffe_parser
def convert_mean(binaryproto_fname, output=None):
"""Convert caffe mean
Parameters
----------
binaryproto_fname : str
Filename of the mean
output : str, optional
Save the mean into mxnet's format
Returns
-------
NDArray
Mean in ndarray
"""
mean_blob = caffe_parser.caffe_pb2.BlobProto()
with open(binaryproto_fname, 'rb') as f:
mean_blob.ParseFromString(f.read())
img_mean_np = np.array(mean_blob.data)
img_mean_np = img_mean_np.reshape(
mean_blob.channels, mean_blob.height, mean_blob.width
)
# swap channels from Caffe BGR to RGB
img_mean_np[[0, 2], :, :] = img_mean_np[[2, 0], :, :]
nd = mx.nd.array(img_mean_np)
if output is not None:
mx.nd.save(output, {"mean_image": nd})
return nd
def main():
parser = argparse.ArgumentParser(description='Convert caffe mean')
parser.add_argument('binaryproto_fname', help='Filename of the mean')
parser.add_argument('output', help='The name of the output file')
args = parser.parse_args()
convert_mean(args.binaryproto_fname, args.output)
if __name__ == '__main__':
main()