| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, |
| # software distributed under the License is distributed on an |
| # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| # KIND, either express or implied. See the License for the |
| # specific language governing permissions and limitations |
| # under the License. |
| |
| import numpy as np |
| import mxnet as mx |
| from mxnet.test_utils import same |
| from mxnet.contrib.svrg_optimization.svrg_module import SVRGModule |
| from mxnet.contrib.svrg_optimization.svrg_optimizer import _SVRGOptimizer |
| |
| |
| def create_network(): |
| |
| train_data = np.random.randint(1, 5, [1000, 2]) |
| weights = np.array([1.0, 2.0]) |
| train_label = train_data.dot(weights) |
| |
| batch_size = 32 |
| |
| di = mx.io.NDArrayIter(train_data, train_label, batch_size=batch_size, shuffle=True, label_name='lin_reg_label') |
| X = mx.sym.Variable('data') |
| Y = mx.symbol.Variable('lin_reg_label') |
| fully_connected_layer = mx.sym.FullyConnected(data=X, name='fc1', num_hidden=1) |
| lro = mx.sym.LinearRegressionOutput(data=fully_connected_layer, label=Y, name="lro") |
| |
| mod = SVRGModule( |
| symbol=lro, |
| data_names=['data'], |
| label_names=['lin_reg_label'], update_freq=2 |
| ) |
| |
| mod.bind(data_shapes=di.provide_data, label_shapes=di.provide_label) |
| mod.init_params(initializer=mx.init.Uniform(0.01), allow_missing=False, |
| force_init=False, allow_extra=False) |
| |
| return di, mod |
| |
| |
| def test_init_svrg_optimizer(): |
| _, mod = create_network() |
| |
| kv = mx.kv.create('local') |
| mod.init_optimizer(kvstore=kv, optimizer='sgd', optimizer_params=(('learning_rate', 0.01),), |
| force_init=False) |
| |
| assert type(mod._optimizer).__name__ == _SVRGOptimizer.__name__ |
| |
| |
| def test_svrg_optimizer_constructor(): |
| kv = mx.kv.create('local') |
| svrg_optimizer = _SVRGOptimizer(default_optimizer='sgd', learning_rate=-1.0) |
| kv.set_optimizer(svrg_optimizer) |
| |
| assert svrg_optimizer.default_opt.lr == -1.0 |
| |
| |
| def test_kvstore_init_aux_keys(): |
| param_idx2name = {0: "weight", 1: "weight_full"} |
| |
| svrg_optimizer = _SVRGOptimizer(default_optimizer='sgd', param_idx2name= param_idx2name, learning_rate=1.0) |
| kv = mx.kv.create('local') |
| kv.set_optimizer(svrg_optimizer) |
| |
| # Use default sgd optimizer |
| param_weight_init = mx.nd.array([0, 0, 0]) |
| param_weight_update = mx.nd.array([1, 1, 1]) |
| |
| kv.init(0, param_weight_init) |
| kv.push(0, param_weight_update) |
| kv.pull(0, param_weight_init) |
| |
| param_weight_full_init = mx.nd.array([1, 1, 1]) |
| param_weight_full_update = mx.nd.array([2, 2, 2]) |
| |
| # Use AssignmentOptimizer |
| kv.init(1, param_weight_full_init) |
| kv.push(1, param_weight_full_update) |
| kv.pull(1, param_weight_full_init) |
| |
| # updated weights using default sgd optimizer |
| assert same(param_weight_init.asnumpy(), np.array([-1, -1, -1])) |
| # updated with AssignmentOptimizer |
| assert same(param_weight_full_init.asnumpy(), np.array([2, 2, 2])) |
| |
| |
| if __name__ == "__main__": |
| import nose |
| nose.runmodule() |