| /* |
| * Licensed to the Apache Software Foundation (ASF) under one |
| * or more contributor license agreements. See the NOTICE file |
| * distributed with this work for additional information |
| * regarding copyright ownership. The ASF licenses this file |
| * to you under the Apache License, Version 2.0 (the |
| * "License"); you may not use this file except in compliance |
| * with the License. You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, |
| * software distributed under the License is distributed on an |
| * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| * KIND, either express or implied. See the License for the |
| * specific language governing permissions and limitations |
| * under the License. |
| */ |
| |
| /*! |
| * \file square_sum.cc |
| * \brief CPU Implementation of square_sum op. |
| */ |
| #include "./square_sum-inl.h" |
| |
| namespace mxnet { |
| namespace op { |
| |
| template<> |
| void CheckSameIdx<cpu>(const OpContext& ctx, |
| const TBlob& ograd_row_idx, |
| const TBlob& in_row_idx) { |
| MSHADOW_IDX_TYPE_SWITCH(ograd_row_idx.type_flag_, IType, { |
| mshadow::Stream<cpu>* s = ctx.get_stream<cpu>(); |
| const IType* ograd_idx = ograd_row_idx.dptr<IType>(); |
| const IType* in_idx = in_row_idx.dptr<IType>(); |
| const nnvm::dim_t idx_size = ograd_row_idx.Size(); |
| int32_t is_different = 0; |
| mxnet_op::Kernel<CheckSameIdxKernel, cpu>::Launch(s, idx_size, |
| ograd_idx, in_idx, &is_different); |
| CHECK_EQ(is_different, 0) << "SquareSumRspGradImpl only supports" |
| " equal ograd_row_idx and input_row_idx" |
| " when ograd and input are both" |
| " row-sparse and input data is not a full" |
| " row-sparse matrix"; |
| }) |
| } |
| |
| |
| MXNET_OPERATOR_REGISTER_REDUCE(_square_sum) |
| .describe(R"code(Computes the square sum of array elements over a given axis |
| for row-sparse matrix. This is a temporary solution for fusing ops square and |
| sum together for row-sparse matrix to save memory for storing gradients. |
| It will become deprecated once the functionality of fusing operators is finished |
| in the future. |
| |
| Example:: |
| |
| dns = mx.nd.array([[0, 0], [1, 2], [0, 0], [3, 4], [0, 0]]) |
| rsp = dns.tostype('row_sparse') |
| sum = mx.nd._internal._square_sum(rsp, axis=1) |
| sum = [0, 5, 0, 25, 0] |
| )code" ADD_FILELINE) |
| .set_attr<FInferStorageType>("FInferStorageType", SquareSumForwardInferStorageType) |
| .set_attr<FComputeEx>("FComputeEx<cpu>", SquareSumOpForwardEx<cpu>) |
| .set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseIn{"_backward_square_sum"}); |
| |
| MXNET_OPERATOR_REGISTER_REDUCE_BACKWARD(_backward_square_sum) |
| .set_num_inputs(2) |
| .set_attr<FResourceRequest>("FResourceRequest", |
| [](const NodeAttrs& attrs) { |
| return std::vector<ResourceRequest>{ResourceRequest::kTempSpace}; |
| }) |
| .set_attr<FInferStorageType>("FInferStorageType", SquareSumBackwardInferStorageType) |
| .set_attr<FComputeEx>("FComputeEx<cpu>", SquareSumOpBackwardEx<cpu>); |
| |
| } // namespace op |
| } // namespace mxnet |