blob: 3bca330f98b0a876ed50cba32f5aa29e18499e00 [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*!
* Copyright (c) 2015 by Contributors
* \file matrix_op.cc
* \brief CPU Implementation of matrix operations
*/
// this will be invoked by gcc and compile CPU version
#include "./matrix_op-inl.h"
#include "./elemwise_unary_op.h"
#include "../nn/mkldnn/mkldnn_ops-inl.h"
#include "../nn/mkldnn/mkldnn_base-inl.h"
#include "../nn/mkldnn/mkldnn_slice-inl.h"
namespace mxnet {
namespace op {
template<>
void SliceDimTwoCsrImpl<cpu>(const mxnet::TShape &begin, const mxnet::TShape &end,
const OpContext& ctx, const NDArray &in, const NDArray &out) {
using namespace mshadow;
using namespace mxnet_op;
using namespace csr;
nnvm::dim_t begin_row = begin[0], end_row = end[0];
nnvm::dim_t begin_col = begin[1], end_col = end[1];
nnvm::dim_t indptr_len = end_row - begin_row + 1;
out.CheckAndAllocAuxData(kIndPtr, Shape1(indptr_len));
// assume idx indptr share the same type
MSHADOW_IDX_TYPE_SWITCH(in.aux_type(kIndPtr), RType, {
MSHADOW_IDX_TYPE_SWITCH(in.aux_type(kIdx), IType, {
MSHADOW_TYPE_SWITCH(in.dtype(), DType, {
RType *in_indptr = in.aux_data(kIndPtr).dptr<RType>();
IType *in_idx = in.aux_data(kIdx).dptr<IType>();
DType *in_data = in.data().dptr<DType>();
// retrieve nnz (CPU implementation)
RType *out_indptr = out.aux_data(kIndPtr).dptr<RType>();
int nnz = 0;
out_indptr[0] = 0;
// loop through indptr array and corresponding indices to count for nnz
for (nnvm::dim_t i = 0; i < indptr_len - 1; i++) {
out_indptr[i+1] = out_indptr[i];
for (RType j = in_indptr[i + begin_row];
j < in_indptr[i + begin_row + 1]; j++) {
// indices of CSRNDArray are in ascending order per row
if (in_idx[j] >= end_col) {
break;
} else if (in_idx[j] >= begin_col) {
out_indptr[i+1]++;
nnz++;
}
}
}
// returns zeros in csr format if nnz = 0
if (nnz == 0) {
out.set_aux_shape(kIdx, Shape1(0));
return;
}
out.CheckAndAllocAuxData(kIdx, Shape1(nnz));
out.CheckAndAllocData(Shape1(nnz));
IType *out_idx = out.aux_data(kIdx).dptr<IType>();
DType *out_data = out.data().dptr<DType>();
Stream<cpu> *s = ctx.get_stream<cpu>();
Kernel<SliceDimTwoCsrAssign, cpu>::Launch(s, indptr_len - 1, out_idx, out_data,
out_indptr, in_idx, in_data,
in_indptr + begin_row,
begin_col, end_col);
});
});
});
}
DMLC_REGISTER_PARAMETER(ReshapeParam);
DMLC_REGISTER_PARAMETER(TransposeParam);
DMLC_REGISTER_PARAMETER(ExpandDimParam);
DMLC_REGISTER_PARAMETER(ClipParam);
DMLC_REGISTER_PARAMETER(SliceAssignScalarParam);
DMLC_REGISTER_PARAMETER(SliceParam);
DMLC_REGISTER_PARAMETER(SliceAxisParam);
DMLC_REGISTER_PARAMETER(SliceLikeParam);
DMLC_REGISTER_PARAMETER(RepeatParam);
DMLC_REGISTER_PARAMETER(TileParam);
DMLC_REGISTER_PARAMETER(ReverseParam);
DMLC_REGISTER_PARAMETER(StackParam);
DMLC_REGISTER_PARAMETER(SqueezeParam);
DMLC_REGISTER_PARAMETER(DepthToSpaceParam);
DMLC_REGISTER_PARAMETER(SplitParam);
#if MXNET_USE_MKLDNN == 1
void MKLDNNReshape(const NDArray &in_data, const NDArray &out_data) {
MSHADOW_TYPE_SWITCH(in_data.dtype(), DType, {
auto this_mem = in_data.GetMKLDNNData();
auto out_dptr = out_data.data().dptr<DType>();
mkldnn::memory::primitive_desc this_pd = this_mem->get_primitive_desc();
mkldnn::memory::desc this_desc = this_pd.desc();
mkldnn::memory::dims dims(this_desc.data.dims,
this_desc.data.dims + this_desc.data.ndims);
auto this_dtype = static_cast<mkldnn::memory::data_type>(this_desc.data.data_type);
auto this_format = static_cast<mkldnn::memory::format>(GetDefaultFormat(this_desc));
mkldnn::memory::desc data_md(dims, this_dtype, this_format);
mkldnn::memory::primitive_desc pd(data_md, this_pd.get_engine());
auto temp_mem = mkldnn::memory(pd, out_dptr);
MKLDNNStream::Get()->RegisterPrim(mkldnn::reorder(*this_mem, temp_mem));
MKLDNNStream::Get()->Submit();
// Removing out_data mkl_mem_ and store data in the default format
const_cast<NDArray &>(out_data).InvalidateMKLDNNData();
});
}
static void ReshapeComputeExCPU(const nnvm::NodeAttrs& attrs,
const OpContext& ctx,
const std::vector<NDArray>& inputs,
const std::vector<OpReqType>& req,
const std::vector<NDArray>& outputs) {
CHECK_EQ(inputs.size(), 1U);
CHECK_EQ(outputs.size(), 1U);
// If inputs are supposed to be in MKLDNN format and
// MKLDNNsupport the data type or the shape. Then convert
// it to the output format and shape
if (SupportMKLDNNArray(inputs[0].dtype(), inputs[0].shape()) && req[0] != kAddTo) {
MKLDNNReshape(inputs[0], outputs[0]);
return;
}
FallBackCompute(UnaryOp::IdentityCompute<cpu>, attrs, ctx, inputs, req, outputs);
}
inline static bool ReshapeStorageType(const nnvm::NodeAttrs& attrs,
const int dev_mask,
DispatchMode* dispatch_mode,
std::vector<int>* in_attrs,
std::vector<int>* out_attrs) {
CHECK_EQ(in_attrs->size(), 1U);
CHECK_EQ(out_attrs->size(), 1U);
return MKLDNNStorageType(attrs, dev_mask, true, dispatch_mode, in_attrs,
out_attrs);
}
#endif
NNVM_REGISTER_OP(Reshape)
.add_alias("reshape")
.describe(R"code(Reshapes the input array.
.. note:: ``Reshape`` is deprecated, use ``reshape``
Given an array and a shape, this function returns a copy of the array in the new shape.
The shape is a tuple of integers such as (2,3,4). The size of the new shape should be same as the size of the input array.
Example::
reshape([1,2,3,4], shape=(2,2)) = [[1,2], [3,4]]
Some dimensions of the shape can take special values from the set {0, -1, -2, -3, -4}. The significance of each is explained below:
- ``0`` copy this dimension from the input to the output shape.
Example::
- input shape = (2,3,4), shape = (4,0,2), output shape = (4,3,2)
- input shape = (2,3,4), shape = (2,0,0), output shape = (2,3,4)
- ``-1`` infers the dimension of the output shape by using the remainder of the input dimensions
keeping the size of the new array same as that of the input array.
At most one dimension of shape can be -1.
Example::
- input shape = (2,3,4), shape = (6,1,-1), output shape = (6,1,4)
- input shape = (2,3,4), shape = (3,-1,8), output shape = (3,1,8)
- input shape = (2,3,4), shape=(-1,), output shape = (24,)
- ``-2`` copy all/remainder of the input dimensions to the output shape.
Example::
- input shape = (2,3,4), shape = (-2,), output shape = (2,3,4)
- input shape = (2,3,4), shape = (2,-2), output shape = (2,3,4)
- input shape = (2,3,4), shape = (-2,1,1), output shape = (2,3,4,1,1)
- ``-3`` use the product of two consecutive dimensions of the input shape as the output dimension.
Example::
- input shape = (2,3,4), shape = (-3,4), output shape = (6,4)
- input shape = (2,3,4,5), shape = (-3,-3), output shape = (6,20)
- input shape = (2,3,4), shape = (0,-3), output shape = (2,12)
- input shape = (2,3,4), shape = (-3,-2), output shape = (6,4)
- ``-4`` split one dimension of the input into two dimensions passed subsequent to -4 in shape (can contain -1).
Example::
- input shape = (2,3,4), shape = (-4,1,2,-2), output shape =(1,2,3,4)
- input shape = (2,3,4), shape = (2,-4,-1,3,-2), output shape = (2,1,3,4)
If the argument `reverse` is set to 1, then the special values are inferred from right to left.
Example::
- without reverse=1, for input shape = (10,5,4), shape = (-1,0), output shape would be (40,5)
- with reverse=1, output shape will be (50,4).
)code" ADD_FILELINE)
.set_num_inputs(1)
.set_num_outputs(1)
.set_attr_parser(ParamParser<ReshapeParam>)
.set_attr<mxnet::FInferShape>("FInferShape", ReshapeShape)
.set_attr<nnvm::FInferType>("FInferType", ElemwiseType<1, 1>)
.set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseNone{"_backward_reshape"})
.set_attr<FCompute>("FCompute<cpu>", UnaryOp::IdentityCompute<cpu>)
#if MXNET_USE_MKLDNN == 1
.set_attr<bool>("TIsMKLDNN", true)
.set_attr<FComputeEx>("FComputeEx<cpu>", ReshapeComputeExCPU)
.set_attr<FInferStorageType>("FInferStorageType", ReshapeStorageType)
.set_attr<FResourceRequest>("FResourceRequest", [](const NodeAttrs& n) {
return std::vector<ResourceRequest>{ResourceRequest::kTempSpace};
})
#else
.set_attr<nnvm::FInplaceOption>("FInplaceOption",
[](const NodeAttrs& attrs) {
return std::vector<std::pair<int, int> >{{0, 0}};
})
.set_attr<nnvm::FInplaceIdentity>("FInplaceIdentity",
[](const NodeAttrs& attrs){
return std::vector<bool>{true};
})
#endif
.add_argument("data", "NDArray-or-Symbol", "Input data to reshape.")
.add_arguments(ReshapeParam::__FIELDS__());
static void FlattenEx(const nnvm::NodeAttrs& attrs,
const OpContext& ctx,
const std::vector<NDArray>& inputs,
const std::vector<OpReqType>& req,
const std::vector<NDArray>& outputs) {
CHECK_EQ(inputs.size(), 1U);
CHECK_EQ(outputs.size(), 1U);
#if MXNET_USE_MKLDNN == 1
if (inputs[0].IsMKLDNNData()) {
MKLDNNCopy(attrs, ctx, inputs[0], req[0], outputs[0]);
// If the output is a special MKLDNN layout and the number of dimensions
// is larger than 2, we should use the default layout.
if (outputs[0].IsMKLDNNData() && inputs[0].shape().ndim() > 2)
const_cast<NDArray &>(outputs[0]).Reorder2Default();
return;
} else {
// This happens if inputs are supposed to be in MKLDNN format
// but MKLDNN doesn't support the data type or the shape. We're
// forced to convert it to the default format.
FallBackCompute(UnaryOp::IdentityCompute<cpu>, attrs, ctx, inputs, req, outputs);
return;
}
#endif
}
#if MXNET_USE_MKLDNN == 1
static inline bool FlattenStorageType(const nnvm::NodeAttrs& attrs,
const int dev_mask,
DispatchMode* dispatch_mode,
std::vector<int> *in_attrs,
std::vector<int> *out_attrs) {
CHECK_EQ(in_attrs->size(), 1);
CHECK_EQ(out_attrs->size(), 1);
return MKLDNNStorageType(attrs, dev_mask, true, dispatch_mode, in_attrs,
out_attrs);
}
#endif
NNVM_REGISTER_OP(Flatten)
.add_alias("flatten")
.describe(R"code(Flattens the input array into a 2-D array by collapsing the higher dimensions.
.. note:: `Flatten` is deprecated. Use `flatten` instead.
For an input array with shape ``(d1, d2, ..., dk)``, `flatten` operation reshapes
the input array into an output array of shape ``(d1, d2*...*dk)``.
Note that the bahavior of this function is different from numpy.ndarray.flatten,
which behaves similar to mxnet.ndarray.reshape((-1,)).
Example::
x = [[
[1,2,3],
[4,5,6],
[7,8,9]
],
[ [1,2,3],
[4,5,6],
[7,8,9]
]],
flatten(x) = [[ 1., 2., 3., 4., 5., 6., 7., 8., 9.],
[ 1., 2., 3., 4., 5., 6., 7., 8., 9.]]
)code" ADD_FILELINE)
.set_num_inputs(1)
.set_num_outputs(1)
.set_attr<mxnet::FInferShape>("FInferShape", FlattenShape)
.set_attr<nnvm::FInferType>("FInferType", ElemwiseType<1, 1>)
#if MXNET_USE_MKLDNN == 1
.set_attr<FInferStorageType>("FInferStorageType", FlattenStorageType)
#endif
.set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseNone{ "_backward_copy" })
.set_attr<FCompute>("FCompute<cpu>", UnaryOp::IdentityCompute<cpu>)
.set_attr<FComputeEx>("FComputeEx<cpu>", FlattenEx)
#if MXNET_USE_MKLDNN == 1
.set_attr<bool>("TIsMKLDNN", true)
.set_attr<FResourceRequest>("FResourceRequest", [](const NodeAttrs& n) {
return std::vector<ResourceRequest>{ResourceRequest::kTempSpace};
})
#endif
.set_attr<nnvm::FInplaceOption>("FInplaceOption",
[](const NodeAttrs& attrs) {
return std::vector<std::pair<int, int> >{{0, 0}};
})
.set_attr<nnvm::FInplaceIdentity>("FInplaceIdentity",
[](const NodeAttrs& attrs){
return std::vector<bool>{true};
})
.add_argument("data", "NDArray-or-Symbol", "Input array.");
NNVM_REGISTER_OP(transpose)
.describe(R"code(Permutes the dimensions of an array.
Examples::
x = [[ 1, 2],
[ 3, 4]]
transpose(x) = [[ 1., 3.],
[ 2., 4.]]
x = [[[ 1., 2.],
[ 3., 4.]],
[[ 5., 6.],
[ 7., 8.]]]
transpose(x) = [[[ 1., 5.],
[ 3., 7.]],
[[ 2., 6.],
[ 4., 8.]]]
transpose(x, axes=(1,0,2)) = [[[ 1., 2.],
[ 5., 6.]],
[[ 3., 4.],
[ 7., 8.]]]
)code" ADD_FILELINE)
.set_num_inputs(1)
.set_num_outputs(1)
.set_attr_parser(ParamParser<TransposeParam>)
.set_attr<mxnet::FInferShape>("FInferShape", TransposeShape)
.set_attr<nnvm::FInferType>("FInferType", ElemwiseType<1, 1>)
.set_attr<nnvm::FGradient>("FGradient",
[](const nnvm::NodePtr& n, const std::vector<nnvm::NodeEntry>& ograds) {
const TransposeParam& param = nnvm::get<TransposeParam>(n->attrs.parsed);
if (param.axes.ndim() == 0) {
return MakeNonlossGradNode(
"transpose", n, ograds, {},
std::unordered_map<std::string, std::string>());
} else {
mxnet::TShape axes = mxnet::TShape(param.axes.ndim());
for (index_t i = 0; i < axes.ndim(); ++i) {
axes[param.axes[i]] = i;
}
std::ostringstream os;
os << axes;
return MakeNonlossGradNode(
"transpose", n, ograds,
{}, {{"axes", os.str()}});
}
})
.set_attr<FCompute>("FCompute<cpu>", Transpose<cpu>)
.add_argument("data", "NDArray-or-Symbol", "Source input")
.add_arguments(TransposeParam::__FIELDS__());
NNVM_REGISTER_OP(expand_dims)
.describe(R"code(Inserts a new axis of size 1 into the array shape
For example, given ``x`` with shape ``(2,3,4)``, then ``expand_dims(x, axis=1)``
will return a new array with shape ``(2,1,3,4)``.
)code" ADD_FILELINE)
.set_num_inputs(1)
.set_num_outputs(1)
.set_attr_parser(ParamParser<ExpandDimParam>)
.set_attr<mxnet::FInferShape>("FInferShape", ExpandDimShape)
.set_attr<nnvm::FInferType>("FInferType", ElemwiseType<1, 1>)
.set_attr<nnvm::FInplaceOption>("FInplaceOption",
[](const NodeAttrs& attrs){
return std::vector<std::pair<int, int> >{{0, 0}};
})
.set_attr<nnvm::FInplaceIdentity>("FInplaceIdentity",
[](const NodeAttrs& attrs){
return std::vector<bool>{true};
})
.set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseNone{"_backward_reshape"})
.set_attr<FCompute>("FCompute<cpu>", UnaryOp::IdentityCompute<cpu>)
.add_argument("data", "NDArray-or-Symbol", "Source input")
.add_arguments(ExpandDimParam::__FIELDS__());
void SliceExCPU(const nnvm::NodeAttrs& attrs,
const OpContext& ctx,
const std::vector<NDArray>& inputs,
const std::vector<OpReqType>& req,
const std::vector<NDArray>& outputs) {
CHECK_EQ(inputs.size(), 1);
CHECK_EQ(outputs.size(), 1);
const SliceParam& param = nnvm::get<SliceParam>(attrs.parsed);
auto in_stype = inputs[0].storage_type();
if (in_stype == kCSRStorage) {
SliceCsrImpl<cpu>(param, ctx, inputs[0], req[0], outputs[0]);
#if MXNET_USE_MKLDNN == 1
} else if (in_stype == kDefaultStorage) {
if (SupportMKLDNN(inputs[0])) {
MKLDNNSlice(param, ctx, inputs[0], req[0], outputs[0]);
} else {
FallBackCompute(SliceOpForward<cpu>, attrs, ctx, inputs, req, outputs);
}
#endif
} else {
LOG(FATAL) << "Slice not implemented for storage type" << in_stype;
}
}
NNVM_REGISTER_OP(slice)
MXNET_ADD_SPARSE_OP_ALIAS(slice)
.add_alias("crop")
.describe(R"code(Slices a region of the array.
.. note:: ``crop`` is deprecated. Use ``slice`` instead.
This function returns a sliced array between the indices given
by `begin` and `end` with the corresponding `step`.
For an input array of ``shape=(d_0, d_1, ..., d_n-1)``,
slice operation with ``begin=(b_0, b_1...b_m-1)``,
``end=(e_0, e_1, ..., e_m-1)``, and ``step=(s_0, s_1, ..., s_m-1)``,
where m <= n, results in an array with the shape
``(|e_0-b_0|/|s_0|, ..., |e_m-1-b_m-1|/|s_m-1|, d_m, ..., d_n-1)``.
The resulting array's *k*-th dimension contains elements
from the *k*-th dimension of the input array starting
from index ``b_k`` (inclusive) with step ``s_k``
until reaching ``e_k`` (exclusive).
If the *k*-th elements are `None` in the sequence of `begin`, `end`,
and `step`, the following rule will be used to set default values.
If `s_k` is `None`, set `s_k=1`. If `s_k > 0`, set `b_k=0`, `e_k=d_k`;
else, set `b_k=d_k-1`, `e_k=-1`.
The storage type of ``slice`` output depends on storage types of inputs
- slice(csr) = csr
- otherwise, ``slice`` generates output with default storage
.. note:: When input data storage type is csr, it only supports
step=(), or step=(None,), or step=(1,) to generate a csr output.
For other step parameter values, it falls back to slicing
a dense tensor.
Example::
x = [[ 1., 2., 3., 4.],
[ 5., 6., 7., 8.],
[ 9., 10., 11., 12.]]
slice(x, begin=(0,1), end=(2,4)) = [[ 2., 3., 4.],
[ 6., 7., 8.]]
slice(x, begin=(None, 0), end=(None, 3), step=(-1, 2)) = [[9., 11.],
[5., 7.],
[1., 3.]]
)code" ADD_FILELINE)
.set_attr_parser(ParamParser<SliceParam>)
.set_attr<mxnet::FInferShape>("FInferShape", SliceOpShape)
.set_attr<nnvm::FInferType>("FInferType", ElemwiseType<1, 1>)
.set_attr<FResourceRequest>("FResourceRequest",
[](const NodeAttrs& attrs) {
return std::vector<ResourceRequest>{ResourceRequest::kTempSpace};
})
.set_attr<FInferStorageType>("FInferStorageType", SliceForwardInferStorageType)
.set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseNone{"_backward_slice"})
.set_attr<FCompute>("FCompute<cpu>", SliceOpForward<cpu>)
.set_attr<FComputeEx>("FComputeEx<cpu>", SliceExCPU)
#if MXNET_USE_MKLDNN == 1
.set_attr<bool>("TIsMKLDNN", true)
#endif
.add_argument("data", "NDArray-or-Symbol", "Source input")
.add_arguments(SliceParam::__FIELDS__());
NNVM_REGISTER_OP(_backward_slice)
.set_attr_parser(ParamParser<SliceParam>)
.set_attr<nnvm::TIsBackward>("TIsBackward", true)
.set_attr<FCompute>("FCompute<cpu>", SliceOpBackward<cpu>);
NNVM_REGISTER_OP(_slice_assign)
.add_alias("_crop_assign")
.MXNET_DESCRIBE("Assign the rhs to a cropped subset of lhs.\n\n"
"Requirements\n"
"------------\n"
"- output should be explicitly given and be the same as lhs.\n"
"- lhs and rhs are of the same data type, and on the same device.\n")
.set_num_inputs(2)
.set_num_outputs(1)
.set_attr<nnvm::FListInputNames>("FListInputNames",
[](const NodeAttrs& attrs) {
return std::vector<std::string>{"lhs", "rhs"};
})
.set_attr_parser(ParamParser<SliceParam>)
.set_attr<mxnet::FInferShape>("FInferShape", SliceAssignOpShape)
.set_attr<nnvm::FInferType>("FInferType", ElemwiseType<2, 1>)
.set_attr<nnvm::FInplaceOption>("FInplaceOption",
[](const NodeAttrs& attrs){
return std::vector<std::pair<int, int> >{{0, 0}};
})
.set_attr<FCompute>("FCompute<cpu>", SliceAssignOpForward<cpu>)
.add_argument("lhs", "NDArray-or-Symbol", "Source input")
.add_argument("rhs", "NDArray-or-Symbol", "value to assign")
.add_arguments(SliceParam::__FIELDS__());
NNVM_REGISTER_OP(_slice_assign_scalar)
.add_alias("_crop_assign_scalar")
.MXNET_DESCRIBE("(Assign the scalar to a cropped subset of the input.\n\n"
"Requirements\n"
"------------\n"
"- output should be explicitly given and be the same as input\n"
")")
.set_num_inputs(1)
.set_num_outputs(1)
.set_attr_parser(ParamParser<SliceAssignScalarParam>)
.set_attr<mxnet::FInferShape>("FInferShape", SliceAssignScalarOpShape)
.set_attr<nnvm::FInferType>("FInferType", ElemwiseType<1, 1>)
.set_attr<nnvm::FInplaceOption>("FInplaceOption",
[](const NodeAttrs& attrs){
return std::vector<std::pair<int, int> >{{0, 0}};
})
.set_attr<FCompute>("FCompute<cpu>", SliceAssignScalarOpForward<cpu>)
.add_argument("data", "NDArray-or-Symbol", "Source input")
.add_arguments(SliceAssignScalarParam::__FIELDS__());
NNVM_REGISTER_OP(slice_axis)
.describe(R"code(Slices along a given axis.
Returns an array slice along a given `axis` starting from the `begin` index
to the `end` index.
Examples::
x = [[ 1., 2., 3., 4.],
[ 5., 6., 7., 8.],
[ 9., 10., 11., 12.]]
slice_axis(x, axis=0, begin=1, end=3) = [[ 5., 6., 7., 8.],
[ 9., 10., 11., 12.]]
slice_axis(x, axis=1, begin=0, end=2) = [[ 1., 2.],
[ 5., 6.],
[ 9., 10.]]
slice_axis(x, axis=1, begin=-3, end=-1) = [[ 2., 3.],
[ 6., 7.],
[ 10., 11.]]
)code" ADD_FILELINE)
.set_num_inputs(1)
.set_num_outputs(1)
.set_attr_parser(ParamParser<SliceAxisParam>)
.set_attr<mxnet::FInferShape>("FInferShape", SliceAxisShape)
.set_attr<nnvm::FInferType>("FInferType", ElemwiseType<1, 1>)
.set_attr<FCompute>("FCompute<cpu>", SliceAxis<cpu>)
.set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseNone{"_backward_slice_axis"})
.add_argument("data", "NDArray-or-Symbol", "Source input")
.add_arguments(SliceAxisParam::__FIELDS__());
NNVM_REGISTER_OP(_backward_slice_axis)
.set_num_inputs(1)
.set_num_outputs(1)
.set_attr_parser(ParamParser<SliceAxisParam>)
.set_attr<nnvm::TIsBackward>("TIsBackward", true)
.set_attr<FCompute>("FCompute<cpu>", SliceAxisGrad_<cpu>);
NNVM_REGISTER_OP(slice_like)
.describe(R"code(Slices a region of the array like the shape of another array.
This function is similar to ``slice``, however, the `begin` are always `0`s
and `end` of specific axes are inferred from the second input `shape_like`.
Given the second `shape_like` input of ``shape=(d_0, d_1, ..., d_n-1)``,
a ``slice_like`` operator with default empty `axes`, it performs the
following operation:
`` out = slice(input, begin=(0, 0, ..., 0), end=(d_0, d_1, ..., d_n-1))``.
When `axes` is not empty, it is used to speficy which axes are being sliced.
Given a 4-d input data, ``slice_like`` operator with ``axes=(0, 2, -1)``
will perform the following operation:
`` out = slice(input, begin=(0, 0, 0, 0), end=(d_0, None, d_2, d_3))``.
Note that it is allowed to have first and second input with different dimensions,
however, you have to make sure the `axes` are specified and not exceeding the
dimension limits.
For example, given `input_1` with ``shape=(2,3,4,5)`` and `input_2` with
``shape=(1,2,3)``, it is not allowed to use:
`` out = slice_like(a, b)`` because ndim of `input_1` is 4, and ndim of `input_2`
is 3.
The following is allowed in this situation:
`` out = slice_like(a, b, axes=(0, 2))``
Example::
x = [[ 1., 2., 3., 4.],
[ 5., 6., 7., 8.],
[ 9., 10., 11., 12.]]
y = [[ 0., 0., 0.],
[ 0., 0., 0.]]
slice_like(x, y) = [[ 1., 2., 3.]
[ 5., 6., 7.]]
slice_like(x, y, axes=(0, 1)) = [[ 1., 2., 3.]
[ 5., 6., 7.]]
slice_like(x, y, axes=(0)) = [[ 1., 2., 3., 4.]
[ 5., 6., 7., 8.]]
slice_like(x, y, axes=(-1)) = [[ 1., 2., 3.]
[ 5., 6., 7.]
[ 9., 10., 11.]]
)code" ADD_FILELINE)
.set_num_inputs(2)
.set_num_outputs(1)
.set_attr_parser(ParamParser<SliceLikeParam>)
.set_attr<nnvm::FListInputNames>("FListInputNames",
[](const NodeAttrs& attrs) {
return std::vector<std::string>{"data", "shape_like"};
})
.set_attr<mxnet::FInferShape>("FInferShape", SliceLikeShape)
.set_attr<nnvm::FInferType>("FInferType", [](const nnvm::NodeAttrs& attrs,
std::vector<int> *in_attrs,
std::vector<int> *out_attrs) {
CHECK_EQ(in_attrs->size(), 2) << " in operator " << attrs.name;
std::vector<int> checked_in_attrs = { (*in_attrs)[0] };
bool ret = !type_is_none((*in_attrs)[1]) &&
ElemwiseType<1, 1>(attrs, &checked_in_attrs, out_attrs);
(*in_attrs)[0] = checked_in_attrs[0];
return ret;
})
.set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseNone{"_backward_slice_like"})
.set_attr<FCompute>("FCompute<cpu>", SliceLikeForward<cpu>)
.add_argument("data", "NDArray-or-Symbol", "Source input")
.add_argument("shape_like", "NDArray-or-Symbol", "Shape like input")
.add_arguments(SliceLikeParam::__FIELDS__());
NNVM_REGISTER_OP(_backward_slice_like)
.set_num_inputs(1)
.set_num_outputs(2)
.set_attr_parser(ParamParser<SliceLikeParam>)
.set_attr<nnvm::TIsBackward>("TIsBackward", true)
.set_attr<FCompute>("FCompute<cpu>", SliceLikeBackward<cpu>);
NNVM_REGISTER_OP(clip)
MXNET_ADD_SPARSE_OP_ALIAS(clip)
.describe(R"code(Clips (limits) the values in an array.
Given an interval, values outside the interval are clipped to the interval edges.
Clipping ``x`` between `a_min` and `a_x` would be::
clip(x, a_min, a_max) = max(min(x, a_max), a_min))
Example::
x = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
clip(x,1,8) = [ 1., 1., 2., 3., 4., 5., 6., 7., 8., 8.]
The storage type of ``clip`` output depends on storage types of inputs and the a_min, a_max \
parameter values:
- clip(default) = default
- clip(row_sparse, a_min <= 0, a_max >= 0) = row_sparse
- clip(csr, a_min <= 0, a_max >= 0) = csr
- clip(row_sparse, a_min < 0, a_max < 0) = default
- clip(row_sparse, a_min > 0, a_max > 0) = default
- clip(csr, a_min < 0, a_max < 0) = csr
- clip(csr, a_min > 0, a_max > 0) = csr
)code" ADD_FILELINE)
.set_num_inputs(1)
.set_num_outputs(1)
.set_attr_parser(ParamParser<ClipParam>)
.set_attr<mxnet::FInferShape>("FInferShape", ElemwiseShape<1, 1>)
.set_attr<nnvm::FInferType>("FInferType", ElemwiseType<1, 1>)
.set_attr<FCompute>("FCompute<cpu>", Clip<cpu>)
.set_attr<FComputeEx>("FComputeEx<cpu>", ClipEx<cpu>)
.set_attr<FInferStorageType>("FInferStorageType", [](const nnvm::NodeAttrs& attrs,
const int dev_mask,
DispatchMode* dispatch_mode,
std::vector<int> *in_attrs,
std::vector<int> *out_attrs) {
bool dispatched = false;
// For clipping ranges that cross zero, sparse output is possible
CHECK_EQ(in_attrs->size(), 1U) << " in operator " << attrs.name;
CHECK_EQ(out_attrs->size(), 1U) << " in operator " << attrs.name;
if ((*in_attrs)[0] == kDefaultStorage) {
dispatched = storage_type_assign(&out_attrs[0], kDefaultStorage,
dispatch_mode, DispatchMode::kFCompute);
}
const auto& param = nnvm::get<ClipParam>(attrs.parsed);
if (!dispatched && param.a_min <= 0.0 && param.a_max >= 0.0) {
const int this_stype = (*in_attrs)[0];
if (this_stype != kUndefinedStorage) {
dispatched = storage_type_assign(&(*out_attrs)[0], kRowSparseStorage,
dispatch_mode, DispatchMode::kFComputeEx);
}
}
if (!dispatched) {
// otherwise, output is dense (print warning anyway)
if (!storage_type_assign(&(*out_attrs)[0], kDefaultStorage,
dispatch_mode, DispatchMode::kFComputeFallback)) {
dispatched = dispatch_fallback(out_attrs, dispatch_mode);
}
}
return dispatched;
})
.set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseIn{ "_backward_clip" })
.add_argument("data", "NDArray-or-Symbol", "Input array.")
.add_arguments(ClipParam::__FIELDS__());
NNVM_REGISTER_OP(_backward_clip)
.set_num_inputs(1)
.set_num_outputs(1)
.set_attr_parser(ParamParser<ClipParam>)
.set_attr<nnvm::TIsBackward>("TIsBackward", true)
.set_attr<FCompute>("FCompute<cpu>", ClipGrad_<cpu>);
NNVM_REGISTER_OP(repeat)
.describe(R"code(Repeats elements of an array.
By default, ``repeat`` flattens the input array into 1-D and then repeats the
elements::
x = [[ 1, 2],
[ 3, 4]]
repeat(x, repeats=2) = [ 1., 1., 2., 2., 3., 3., 4., 4.]
The parameter ``axis`` specifies the axis along which to perform repeat::
repeat(x, repeats=2, axis=1) = [[ 1., 1., 2., 2.],
[ 3., 3., 4., 4.]]
repeat(x, repeats=2, axis=0) = [[ 1., 2.],
[ 1., 2.],
[ 3., 4.],
[ 3., 4.]]
repeat(x, repeats=2, axis=-1) = [[ 1., 1., 2., 2.],
[ 3., 3., 4., 4.]]
)code" ADD_FILELINE)
.set_num_outputs(1)
.set_num_inputs(1)
.set_attr_parser(ParamParser<RepeatParam>)
.set_attr<nnvm::FListInputNames>("FListInputNames",
[](const NodeAttrs& attrs) {
return std::vector<std::string>{"data"};
})
.set_attr<mxnet::FInferShape>("FInferShape", RepeatOpShape)
.set_attr<nnvm::FInferType>("FInferType", RepeatOpType)
.set_attr<FCompute>("FCompute<cpu>", RepeatOpForward<cpu>)
.set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseNone{"_backward_repeat"})
.add_argument("data", "NDArray-or-Symbol", "Input data array")
.add_arguments(RepeatParam::__FIELDS__());
NNVM_REGISTER_OP(_backward_repeat)
.set_num_inputs(1)
.set_num_outputs(1)
.set_attr_parser(ParamParser<RepeatParam>)
.set_attr<nnvm::TIsBackward>("TIsBackward", true)
.set_attr<FCompute>("FCompute<cpu>", RepeatOpBackward<cpu>)
.set_attr<FResourceRequest>("FResourceRequest",
[](const NodeAttrs& attrs) {
return std::vector<ResourceRequest> {ResourceRequest::kTempSpace};
});
NNVM_REGISTER_OP(tile)
.describe(R"code(Repeats the whole array multiple times.
If ``reps`` has length *d*, and input array has dimension of *n*. There are
three cases:
- **n=d**. Repeat *i*-th dimension of the input by ``reps[i]`` times::
x = [[1, 2],
[3, 4]]
tile(x, reps=(2,3)) = [[ 1., 2., 1., 2., 1., 2.],
[ 3., 4., 3., 4., 3., 4.],
[ 1., 2., 1., 2., 1., 2.],
[ 3., 4., 3., 4., 3., 4.]]
- **n>d**. ``reps`` is promoted to length *n* by pre-pending 1's to it. Thus for
an input shape ``(2,3)``, ``repos=(2,)`` is treated as ``(1,2)``::
tile(x, reps=(2,)) = [[ 1., 2., 1., 2.],
[ 3., 4., 3., 4.]]
- **n<d**. The input is promoted to be d-dimensional by prepending new axes. So a
shape ``(2,2)`` array is promoted to ``(1,2,2)`` for 3-D replication::
tile(x, reps=(2,2,3)) = [[[ 1., 2., 1., 2., 1., 2.],
[ 3., 4., 3., 4., 3., 4.],
[ 1., 2., 1., 2., 1., 2.],
[ 3., 4., 3., 4., 3., 4.]],
[[ 1., 2., 1., 2., 1., 2.],
[ 3., 4., 3., 4., 3., 4.],
[ 1., 2., 1., 2., 1., 2.],
[ 3., 4., 3., 4., 3., 4.]]]
)code" ADD_FILELINE)
.set_num_outputs(1)
.set_num_inputs(1)
.set_attr_parser(ParamParser<TileParam>)
.set_attr<nnvm::FListInputNames>("FListInputNames",
[](const NodeAttrs& attrs) {
return std::vector<std::string>{"data"};
})
.set_attr<mxnet::FInferShape>("FInferShape", TileOpShape)
.set_attr<nnvm::FInferType>("FInferType", TileOpType)
.set_attr<FCompute>("FCompute<cpu>", TileOpForward<cpu>)
.set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseNone{"_backward_tile"})
.add_argument("data", "NDArray-or-Symbol", "Input data array")
.add_arguments(TileParam::__FIELDS__());
NNVM_REGISTER_OP(_backward_tile)
.set_num_inputs(1)
.set_num_outputs(1)
.set_attr_parser(ParamParser<TileParam>)
.set_attr<nnvm::TIsBackward>("TIsBackward", true)
.set_attr<FCompute>("FCompute<cpu>", TileOpBackward<cpu>)
.set_attr<FResourceRequest>("FResourceRequest",
[](const NodeAttrs& attrs) {
return std::vector<ResourceRequest> {ResourceRequest::kTempSpace};
});
NNVM_REGISTER_OP(reverse)
.describe(R"code(Reverses the order of elements along given axis while preserving array shape.
Note: reverse and flip are equivalent. We use reverse in the following examples.
Examples::
x = [[ 0., 1., 2., 3., 4.],
[ 5., 6., 7., 8., 9.]]
reverse(x, axis=0) = [[ 5., 6., 7., 8., 9.],
[ 0., 1., 2., 3., 4.]]
reverse(x, axis=1) = [[ 4., 3., 2., 1., 0.],
[ 9., 8., 7., 6., 5.]]
)code" ADD_FILELINE)
.set_num_outputs(1)
.set_num_inputs(1)
.add_alias("flip")
.set_attr_parser(ParamParser<ReverseParam>)
.set_attr<nnvm::FListInputNames>("FListInputNames",
[](const NodeAttrs& attrs) {
return std::vector<std::string> {"data"};
})
.set_attr<FResourceRequest>("FResourceRequest",
[](const NodeAttrs& attrs) {
return std::vector<ResourceRequest> {ResourceRequest::kTempSpace};
})
.set_attr<mxnet::FInferShape>("FInferShape", ElemwiseShape<1, 1>)
.set_attr<nnvm::FInferType>("FInferType", ElemwiseType<1, 1>)
.set_attr<FCompute>("FCompute<cpu>", ReverseOpForward<cpu>)
.set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseNone{ "_backward_reverse" })
.add_argument("data", "NDArray-or-Symbol", "Input data array")
.add_arguments(ReverseParam::__FIELDS__());
NNVM_REGISTER_OP(_backward_reverse)
.set_num_inputs(1)
.set_num_outputs(1)
.set_attr_parser(ParamParser<ReverseParam>)
.set_attr<nnvm::TIsBackward>("TIsBackward", true)
.set_attr<FResourceRequest>("FResourceRequest",
[](const NodeAttrs& attrs) {
return std::vector<ResourceRequest> {ResourceRequest::kTempSpace};
})
.set_attr<FCompute>("FCompute<cpu>", ReverseOpForward<cpu>);
NNVM_REGISTER_OP(stack)
.describe(R"code(Join a sequence of arrays along a new axis.
The axis parameter specifies the index of the new axis in the dimensions of the
result. For example, if axis=0 it will be the first dimension and if axis=-1 it
will be the last dimension.
Examples::
x = [1, 2]
y = [3, 4]
stack(x, y) = [[1, 2],
[3, 4]]
stack(x, y, axis=1) = [[1, 3],
[2, 4]]
)code")
.set_num_inputs([](const nnvm::NodeAttrs& attrs) {
const StackParam& param = dmlc::get<StackParam>(attrs.parsed);
return static_cast<uint32_t>(param.num_args);
})
.set_num_outputs(1)
.set_attr_parser(ParamParser<StackParam>)
.set_attr<nnvm::FListInputNames>("FListInputNames",
[](const NodeAttrs& attrs) {
uint32_t num_args = dmlc::get<StackParam>(attrs.parsed).num_args;
std::vector<std::string> ret;
for (uint32_t i = 0; i < num_args; ++i) {
ret.push_back(std::string("arg") + std::to_string(i));
}
return ret;
})
.set_attr<std::string>("key_var_num_args", "num_args")
.set_attr<mxnet::FInferShape>("FInferShape", StackOpShape)
.set_attr<nnvm::FInferType>("FInferType", ElemwiseType<-1, 1>)
.set_attr<FCompute>("FCompute<cpu>", StackOpForward<cpu>)
.set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseNone{"_backward_stack"})
.add_argument("data", "NDArray-or-Symbol[]", "List of arrays to stack")
.add_arguments(StackParam::__FIELDS__());
NNVM_REGISTER_OP(_backward_stack)
.set_num_inputs(1)
.set_num_outputs([](const nnvm::NodeAttrs& attrs) {
const StackParam& param = dmlc::get<StackParam>(attrs.parsed);
return static_cast<uint32_t>(param.num_args);
})
.set_attr_parser(ParamParser<StackParam>)
.set_attr<nnvm::TIsBackward>("TIsBackward", true)
.set_attr<FCompute>("FCompute<cpu>", StackOpBackward<cpu>);
NNVM_REGISTER_OP(squeeze)
.describe(R"code(Remove single-dimensional entries from the shape of an array.
Same behavior of defining the output tensor shape as numpy.squeeze for the most of cases.
See the following note for exception.
Examples::
data = [[[0], [1], [2]]]
squeeze(data) = [0, 1, 2]
squeeze(data, axis=0) = [[0], [1], [2]]
squeeze(data, axis=2) = [[0, 1, 2]]
squeeze(data, axis=(0, 2)) = [0, 1, 2]
.. Note::
The output of this operator will keep at least one dimension not removed. For example,
squeeze([[[4]]]) = [4], while in numpy.squeeze, the output will become a scalar.
)code")
.set_num_inputs(1)
.set_num_outputs(1)
.set_attr_parser(ParamParser<SqueezeParam>)
.set_attr<nnvm::FListInputNames>("FListInputNames",
[](const NodeAttrs& attrs) {
return std::vector<std::string>{"data"};
})
.set_attr<mxnet::FInferShape>("FInferShape", SqueezeShape)
.set_attr<nnvm::FInferType>("FInferType", ElemwiseType<1, 1>)
.set_attr<FCompute>("FCompute<cpu>", UnaryOp::IdentityCompute<cpu>)
.set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseNone{"_backward_squeeze"})
.add_argument("data", "NDArray-or-Symbol[]", "data to squeeze")
.add_arguments(SqueezeParam::__FIELDS__());
NNVM_REGISTER_OP(_backward_squeeze)
.set_num_inputs(1)
.set_num_outputs(1)
.set_attr_parser(ParamParser<SqueezeParam>)
.set_attr<nnvm::TIsBackward>("TIsBackward", true)
.set_attr<FCompute>("FCompute<cpu>", UnaryOp::IdentityCompute<cpu>);
NNVM_REGISTER_OP(depth_to_space)
.describe(R"code(Rearranges(permutes) data from depth into blocks of spatial data.
Similar to ONNX DepthToSpace operator:
https://github.com/onnx/onnx/blob/master/docs/Operators.md#DepthToSpace.
The output is a new tensor where the values from depth dimension are moved in spatial blocks
to height and width dimension. The reverse of this operation is ``space_to_depth``.
.. math::
\begin{gather*}
x \prime = reshape(x, [N, block\_size, block\_size, C / (block\_size ^ 2), H * block\_size, W * block\_size]) \\
x \prime \prime = transpose(x \prime, [0, 3, 4, 1, 5, 2]) \\
y = reshape(x \prime \prime, [N, C / (block\_size ^ 2), H * block\_size, W * block\_size])
\end{gather*}
where :math:`x` is an input tensor with default layout as :math:`[N, C, H, W]`: [batch, channels, height, width]
and :math:`y` is the output tensor of layout :math:`[N, C / (block\_size ^ 2), H * block\_size, W * block\_size]`
Example::
x = [[[[0, 1, 2],
[3, 4, 5]],
[[6, 7, 8],
[9, 10, 11]],
[[12, 13, 14],
[15, 16, 17]],
[[18, 19, 20],
[21, 22, 23]]]]
depth_to_space(x, 2) = [[[[0, 6, 1, 7, 2, 8],
[12, 18, 13, 19, 14, 20],
[3, 9, 4, 10, 5, 11],
[15, 21, 16, 22, 17, 23]]]]
)code" ADD_FILELINE)
.set_attr_parser(ParamParser<DepthToSpaceParam>)
.set_num_inputs(1)
.set_num_outputs(1)
.set_attr<nnvm::FListInputNames>("FListInputNames",
[](const NodeAttrs& attrs) {
return std::vector<std::string>{"data"};
})
.set_attr<mxnet::FInferShape>("FInferShape", DepthToSpaceOpShape)
.set_attr<nnvm::FInferType>("FInferType", DepthToSpaceOpType)
.set_attr<FCompute>("FCompute<cpu>", DepthToSpaceOpForward<cpu>)
.set_attr<FResourceRequest>("FResourceRequest",
[](const NodeAttrs& n) {
return std::vector<ResourceRequest>{ResourceRequest::kTempSpace};
})
.set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseNone{"space_to_depth"})
.add_argument("data", "NDArray-or-Symbol", "Input ndarray")
.add_arguments(DepthToSpaceParam::__FIELDS__());
NNVM_REGISTER_OP(space_to_depth)
.describe(R"code(Rearranges(permutes) blocks of spatial data into depth.
Similar to ONNX SpaceToDepth operator:
https://github.com/onnx/onnx/blob/master/docs/Operators.md#SpaceToDepth
The output is a new tensor where the values from height and width dimension are
moved to the depth dimension. The reverse of this operation is ``depth_to_space``.
.. math::
\begin{gather*}
x \prime = reshape(x, [N, C, H / block\_size, block\_size, W / block\_size, block\_size]) \\
x \prime \prime = transpose(x \prime, [0, 3, 5, 1, 2, 4]) \\
y = reshape(x \prime \prime, [N, C * (block\_size ^ 2), H / block\_size, W / block\_size])
\end{gather*}
where :math:`x` is an input tensor with default layout as :math:`[N, C, H, W]`: [batch, channels, height, width]
and :math:`y` is the output tensor of layout :math:`[N, C * (block\_size ^ 2), H / block\_size, W / block\_size]`
Example::
x = [[[[0, 6, 1, 7, 2, 8],
[12, 18, 13, 19, 14, 20],
[3, 9, 4, 10, 5, 11],
[15, 21, 16, 22, 17, 23]]]]
space_to_depth(x, 2) = [[[[0, 1, 2],
[3, 4, 5]],
[[6, 7, 8],
[9, 10, 11]],
[[12, 13, 14],
[15, 16, 17]],
[[18, 19, 20],
[21, 22, 23]]]]
)code" ADD_FILELINE)
.set_attr_parser(ParamParser<DepthToSpaceParam>)
.set_num_inputs(1)
.set_num_outputs(1)
.set_attr<nnvm::FListInputNames>("FListInputNames",
[](const NodeAttrs& attrs) {
return std::vector<std::string>{"data"};
})
.set_attr<mxnet::FInferShape>("FInferShape", SpaceToDepthOpShape)
.set_attr<nnvm::FInferType>("FInferType", SpaceToDepthOpType)
.set_attr<FCompute>("FCompute<cpu>", SpaceToDepthOpForward<cpu>)
.set_attr<FResourceRequest>("FResourceRequest",
[](const NodeAttrs& n) {
return std::vector<ResourceRequest>{ResourceRequest::kTempSpace};
})
.set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseNone{"depth_to_space"})
.add_argument("data", "NDArray-or-Symbol", "Input ndarray")
.add_arguments(DepthToSpaceParam::__FIELDS__());
NNVM_REGISTER_OP(_split_v2)
.describe(R"code(Splits an array along a particular axis into multiple sub-arrays.
Example::
x = [[[ 1.]
[ 2.]]
[[ 3.]
[ 4.]]
[[ 5.]
[ 6.]]]
x.shape = (3, 2, 1)
y = split_v2(x, axis=1, indices_or_sections=2) // a list of 2 arrays with shape (3, 1, 1)
y = [[[ 1.]]
[[ 3.]]
[[ 5.]]]
[[[ 2.]]
[[ 4.]]
[[ 6.]]]
y[0].shape = (3, 1, 1)
z = split_v2(x, axis=0, indices_or_sections=3) // a list of 3 arrays with shape (1, 2, 1)
z = [[[ 1.]
[ 2.]]]
[[[ 3.]
[ 4.]]]
[[[ 5.]
[ 6.]]]
z[0].shape = (1, 2, 1)
w = split_v2(x, axis=0, indices_or_sections=(1,)) // a list of 2 arrays with shape [(1, 2, 1), (2, 2, 1)]
w = [[[ 1.]
[ 2.]]]
[[[3.]
[4.]]
[[5.]
[6.]]]
w[0].shape = (1, 2, 1)
w[1].shape = (2, 2, 1)
`squeeze_axis=True` removes the axis with length 1 from the shapes of the output arrays.
**Note** that setting `squeeze_axis` to ``1`` removes axis with length 1 only
along the `axis` which it is split.
Also `squeeze_axis` can be set to true only if ``input.shape[axis] == indices_or_sections``.
Example::
z = split_v2(x, axis=0, indices_or_sections=3, squeeze_axis=1) // a list of 3 arrays with shape (2, 1)
z = [[ 1.]
[ 2.]]
[[ 3.]
[ 4.]]
[[ 5.]
[ 6.]]
z[0].shape = (2, 1)
)code" ADD_FILELINE)
.set_attr_parser(ParamParser<SplitParam>)
.set_num_inputs(1)
.set_num_outputs(SplitNumOutputs)
.set_attr<nnvm::FListInputNames>("FListInputNames",
[](const NodeAttrs& attrs) {
return std::vector<std::string>{"data"};
})
.set_attr<mxnet::FInferShape>("FInferShape", SplitOpShape)
.set_attr<nnvm::FInferType>("FInferType", SplitOpType)
.set_attr<FCompute>("FCompute<cpu>", SplitOpForward<cpu>)
.set_attr<FResourceRequest>("FResourceRequest",
[](const NodeAttrs& n) {
return std::vector<ResourceRequest>{ResourceRequest::kTempSpace};
})
.set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseNone{"_split_v2_backward"})
.add_argument("data", "NDArray-or-Symbol", "The input")
.add_arguments(SplitParam::__FIELDS__());
NNVM_REGISTER_OP(_split_v2_backward)
.set_attr_parser(ParamParser<SplitParam>)
.set_num_inputs(SplitNumOutputs)
.set_num_outputs(1)
.set_attr<nnvm::TIsBackward>("TIsBackward", true)
.set_attr<FResourceRequest>("FResourceRequest",
[](const NodeAttrs& n) {
return std::vector<ResourceRequest>{ResourceRequest::kTempSpace};
})
.set_attr<FCompute>("FCompute<cpu>", SplitOpBackward<cpu>);
} // namespace op
} // namespace mxnet