blob: 039b9d1559721b8de0d512f28ea51eac1ebe62c2 [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*!
* Copyright (c) 2017 by Contributors
* \file sample_multinomial_op.h
* \brief Operator for sampling from multinomial distributions
*/
#include "./sample_multinomial_op.h"
namespace mxnet {
namespace op {
NNVM_REGISTER_OP(_sample_multinomial)
.set_attr<FCompute>("FCompute<gpu>", SampleMultinomialForward<gpu>);
struct SampleMultinomialBackwardGPUKernel {
template<typename DType, typename IType>
MSHADOW_XINLINE static void Map(int i, index_t K, index_t M,
DType* ograd, DType* dist, IType* out,
DType* igrad) {
for (index_t j = 0; j < M; ++j) {
atomicAdd(&igrad[i*K + static_cast<size_t>(out[i*M + j])],
ograd[i*M + j] / dist[i*K + static_cast<size_t>(out[i*M + j])]);
}
}
};
NNVM_REGISTER_OP(_backward_sample_multinomial)
.set_attr<FCompute>("FCompute<gpu>",
SampleMultinomialBackward<SampleMultinomialBackwardGPUKernel, gpu>);
} // namespace op
} // namespace mxnet