blob: 02ace6c39fac5f2de5813aaf37333aa757cb76bd [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*!
* Copyright (c) 2017 by Contributors
* \file quantize_v2-inl.h
* \brief implementation of quantize operation
*/
#ifndef MXNET_OPERATOR_QUANTIZATION_QUANTIZE_V2_INL_H_
#define MXNET_OPERATOR_QUANTIZATION_QUANTIZE_V2_INL_H_
#include <mxnet/operator_util.h>
#include <vector>
#include <limits>
#include "../elemwise_op_common.h"
#include "../mshadow_op.h"
#include "../mxnet_op.h"
#include "./quantization_utils.h"
#include "../tensor/broadcast_reduce_op.h"
namespace mxnet {
namespace op {
struct QuantizeV2Param : public dmlc::Parameter<QuantizeV2Param> {
enum OutType { kAuto = 0, kInt8, kUint8 };
int out_type;
dmlc::optional<float> min_calib_range;
dmlc::optional<float> max_calib_range;
DMLC_DECLARE_PARAMETER(QuantizeV2Param) {
DMLC_DECLARE_FIELD(out_type)
.add_enum("auto", kAuto)
.add_enum("int8", kInt8)
.add_enum("uint8", kUint8)
.set_default(kInt8)
.describe("Output data type. `auto` can be specified to automatically determine output type "
"according to min_calib_range.");
DMLC_DECLARE_FIELD(min_calib_range)
.set_default(dmlc::optional<float>())
.describe("The minimum scalar value in the form of float32. If present, it will be used to "
"quantize the fp32 data into int8 or uint8.");
DMLC_DECLARE_FIELD(max_calib_range)
.set_default(dmlc::optional<float>())
.describe("The maximum scalar value in the form of float32. If present, it will be used to "
"quantize the fp32 data into int8 or uint8.");
}
};
static mshadow::TypeFlag GetOutputType(const QuantizeV2Param &param) {
auto out_type = mshadow::kInt8;
if (param.out_type == QuantizeV2Param::OutType::kAuto) {
if (param.min_calib_range.has_value() && param.max_calib_range.has_value()) {
if (param.min_calib_range.value() >= 0.0) {
out_type = mshadow::kUint8;
} else {
out_type = mshadow::kInt8;
}
}
} else if (param.out_type == QuantizeV2Param::OutType::kInt8) {
out_type = mshadow::kInt8;
} else if (param.out_type == QuantizeV2Param::OutType::kUint8) {
out_type = mshadow::kUint8;
} else {
LOG(FATAL) << "Unsupported out_type in params: " <<param.out_type;
}
return out_type;
}
// quantize float to uint8_t
struct quantize_v2_unsigned {
template <typename DstDType, typename SrcDType>
MSHADOW_XINLINE static void Map(int i, DstDType *out, float *omin_range, float *omax_range,
const SrcDType *in, const float imin_range,
const float imax_range, const double min_limit,
const double max_limit) {
const float scale = (max_limit - min_limit) / (imax_range - imin_range);
out[i] = static_cast<DstDType>((in[i] - imin_range) * scale + 0.5);
*omin_range = imin_range;
*omax_range = imax_range;
}
template <typename DstDType, typename SrcDType>
MSHADOW_XINLINE static void Map(int i, DstDType *out, float *omin_range, float *omax_range,
const SrcDType *in, const float *imin_range,
const float *imax_range, const double min_limit,
const double max_limit) {
Map(i, out, omin_range, omax_range, in, *imin_range, *imax_range, min_limit, max_limit);
}
};
// keep zero-center
struct quantize_v2_zero_centered {
template <typename DstDType, typename SrcDType>
MSHADOW_XINLINE static void Map(int i, DstDType *out, float *omin_range, float *omax_range,
const SrcDType *in, const float imin_range,
const float imax_range, const float quantized_range) {
float real_range = MaxAbs(imin_range, imax_range);
float scale = quantized_range / real_range;
SrcDType x = in[i];
out[i] = static_cast<DstDType>(Sign(x) * Min(Abs(x) * scale + 0.5f, quantized_range));
*omin_range = -real_range;
*omax_range = real_range;
}
template <typename DstDType, typename SrcDType>
MSHADOW_XINLINE static void Map(int i, DstDType *out, float *omin_range, float *omax_range,
const SrcDType *in, const float *imin_range,
const float *imax_range, const float quantized_range) {
Map(i, out, omin_range, omax_range, in, *imin_range, *imax_range, quantized_range);
}
};
template <typename xpu>
void QuantizeV2Compute(const nnvm::NodeAttrs &attrs, const OpContext &ctx,
const std::vector<TBlob> &inputs, const std::vector<OpReqType> &req,
const std::vector<TBlob> &outputs) {
using namespace mshadow;
using namespace mxnet_op;
typedef float SrcDType;
using mshadow::red::limits::MaxValue;
using mshadow::red::limits::MinValue;
Stream<xpu> *s = ctx.get_stream<xpu>();
const QuantizeV2Param &param = nnvm::get<QuantizeV2Param>(attrs.parsed);
auto out_type = GetOutputType(param);
if (out_type == mshadow::kUint8 && std::is_same<xpu, gpu>::value) {
LOG(FATAL) << "currently, uint8 quantization is only supported by CPU, "
"please switch to the context of CPU or int8 data type for GPU.";
}
if (inputs[0].type_flag_ == mshadow::kUint8 || inputs[0].type_flag_ == mshadow::kInt8) {
if (param.min_calib_range.has_value() && param.max_calib_range.has_value()) {
*outputs[1].dptr<float>() = param.min_calib_range.value();
*outputs[2].dptr<float>() = param.max_calib_range.value();
} else {
if (inputs[0].type_flag_ == mshadow::kUint8) {
*outputs[1].dptr<float>() = 0;
*outputs[2].dptr<float>() = 255;
} else {
*outputs[1].dptr<float>() = -127;
*outputs[2].dptr<float>() = 127;
}
}
UnaryOp::IdentityCompute<xpu>(attrs, ctx, {inputs[0]}, req, outputs);
} else {
if (param.min_calib_range.has_value() && param.max_calib_range.has_value()) {
if (out_type == mshadow::kUint8) {
Kernel<quantize_v2_unsigned, xpu>::Launch(
s, outputs[0].Size(), outputs[0].dptr<uint8_t>(), outputs[1].dptr<float>(),
outputs[2].dptr<float>(), inputs[0].dptr<SrcDType>(), param.min_calib_range.value(),
param.max_calib_range.value(), MinValue<uint8_t>(), MaxValue<uint8_t>());
} else if (out_type == mshadow::kInt8) { // zero-centered quantization
Kernel<quantize_v2_zero_centered, xpu>::Launch(
s, outputs[0].Size(), outputs[0].dptr<int8_t>(), outputs[1].dptr<float>(),
outputs[2].dptr<float>(), inputs[0].dptr<SrcDType>(), param.min_calib_range.value(),
param.max_calib_range.value(), MinAbs(MaxValue<int8_t>(), MinValue<int8_t>()));
} else {
LOG(FATAL) << "quantize op only supports int8 and uint8 as output type";
}
} else { // model is not calibrated
mxnet::TShape src_shape, dst_shape;
const size_t actual_float_size = sizeof(float);
const size_t temp_reduce_size = ConfigReduce<xpu, SrcDType>(
s, inputs[0].shape_, mxnet::TShape({1}), &src_shape, &dst_shape);
Tensor<xpu, 1, char> temp_space = ctx.requested[0].get_space_typed<xpu, 1, char>(
Shape1(2 * actual_float_size + temp_reduce_size), s);
const int dev_id = ctx.run_ctx.ctx.dev_id;
TBlob in_min_t(reinterpret_cast<SrcDType *>(temp_space.dptr_), Shape1(1), xpu::kDevMask,
dev_id);
TBlob in_max_t(reinterpret_cast<SrcDType *>(temp_space.dptr_) + 1, Shape1(1), xpu::kDevMask,
dev_id);
Tensor<xpu, 1, char> workspace(temp_space.dptr_ + 2 * actual_float_size,
Shape1(temp_reduce_size), s);
broadcast::Reduce<red::minimum, 2, SrcDType, mshadow::op::identity>(
s, in_min_t.reshape(dst_shape), kWriteTo, workspace, inputs[0].reshape(src_shape));
broadcast::Reduce<red::maximum, 2, SrcDType, mshadow::op::identity>(
s, in_max_t.reshape(dst_shape), kWriteTo, workspace, inputs[0].reshape(src_shape));
if (out_type == mshadow::kUint8) {
Kernel<quantize_v2_unsigned, xpu>::Launch(
s, outputs[0].Size(), outputs[0].dptr<uint8_t>(), outputs[1].dptr<float>(),
outputs[2].dptr<float>(), inputs[0].dptr<SrcDType>(), in_min_t.dptr<float>(),
in_max_t.dptr<float>(), MinValue<uint8_t>(), MaxValue<uint8_t>());
} else if (out_type == mshadow::kInt8) { // zero-centered quantization
Kernel<quantize_v2_zero_centered, xpu>::Launch(
s, outputs[0].Size(), outputs[0].dptr<int8_t>(), outputs[1].dptr<float>(),
outputs[2].dptr<float>(), inputs[0].dptr<SrcDType>(), in_min_t.dptr<float>(),
in_max_t.dptr<float>(), MinAbs(MaxValue<int8_t>(), MinValue<int8_t>()));
} else {
LOG(FATAL) << "quantize op only supports int8 and uint8 as output type";
}
}
}
}
static inline bool QuantizeV2Shape(const nnvm::NodeAttrs &attrs, mxnet::ShapeVector *in_attrs,
mxnet::ShapeVector *out_attrs) {
CHECK_EQ(in_attrs->size(), 1U);
CHECK_EQ(out_attrs->size(), 3U);
SHAPE_ASSIGN_CHECK(*out_attrs, 0, in_attrs->at(0));
SHAPE_ASSIGN_CHECK(*out_attrs, 1, mxnet::TShape{1});
SHAPE_ASSIGN_CHECK(*out_attrs, 2, mxnet::TShape{1});
return !shape_is_none(out_attrs->at(0));
}
static inline bool QuantizeV2Type(const nnvm::NodeAttrs &attrs, std::vector<int> *in_attrs,
std::vector<int> *out_attrs) {
CHECK_EQ(in_attrs->size(), 1U);
CHECK_EQ(out_attrs->size(), 3U);
const QuantizeV2Param &param = nnvm::get<QuantizeV2Param>(attrs.parsed);
CHECK(in_attrs->at(0) == mshadow::kFloat32 || in_attrs->at(0) == mshadow::kUint8 ||
in_attrs->at(0) == mshadow::kInt8);
auto out_type = GetOutputType(param);
if (out_type == mshadow::kUint8) {
TYPE_ASSIGN_CHECK(*out_attrs, 0, mshadow::kUint8);
} else if (out_type == mshadow::kInt8) {
TYPE_ASSIGN_CHECK(*out_attrs, 0, mshadow::kInt8);
} else {
LOG(FATAL) << "quantize op only supports int8 and uint8 as output type";
}
TYPE_ASSIGN_CHECK(*out_attrs, 1, mshadow::kFloat32);
TYPE_ASSIGN_CHECK(*out_attrs, 2, mshadow::kFloat32);
return (*in_attrs)[0] != -1;
}
} // namespace op
} // namespace mxnet
#endif // MXNET_OPERATOR_QUANTIZATION_QUANTIZE_V2_INL_H_