blob: 10e736258ab1b75ac386afdc3957b30685a5e124 [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*!
* Copyright (c) 2015 by Contributors
* \file activation.cc
* \brief activation op
* \author Bing Xu, Da Zheng
*/
#include "./activation-inl.h"
#include "../mshadow_op.h"
#include "../tensor/elemwise_unary_op.h"
#if MXNET_USE_MKLDNN == 1
#include "./mkldnn/mkldnn_base-inl.h"
#include "./mkldnn/mkldnn_ops-inl.h"
#endif // MXNET_USE_MKLDNN == 1
#include "../operator_common.h"
#include "../../common/utils.h"
namespace mxnet {
namespace op {
namespace activation {
int GradNumInputs(int act_type) {
// check activation.cu \sa ActivationGradCompute
switch (act_type) {
case kReLU:
return 2;
case kSoftReLU:
case kSoftSign:
case kTanh:
case kSigmoid:
return 3;
default:
CHECK(false) << "missing activation type";
}
// unreachable
return -1;
}
} // namespace activation
DMLC_REGISTER_PARAMETER(ActivationParam);
// This will determine the order of the inputs for backward computation.
struct ActivationGrad {
const char *op_name;
std::vector<nnvm::NodeEntry> operator()(const nnvm::NodePtr& n,
const std::vector<nnvm::NodeEntry>& ograds) const {
// ograds, output...
std::vector<nnvm::NodeEntry> heads(ograds.begin(), ograds.end());
heads.emplace_back(nnvm::NodeEntry{n, activation::kOut, 0});
const NodeAttrs& attrs = n->attrs;
using namespace activation;
int act_type = dmlc::get<ActivationParam>(attrs.parsed).act_type;
// for ReLU, no need to pass input data. This enables inplace optimization during the
// forward pass.
// check activation.cu \sa ActivationGradCompute
switch (act_type) {
case kReLU:
break;
case kSoftReLU:
case kSoftSign:
case kTanh:
case kSigmoid:
heads.push_back(n->inputs[activation::kData]);
break;
default:
CHECK(false) << "missing activation type";
}
return MakeGradNode(op_name, n, heads, n->attrs.dict);
}
};
#if MXNET_USE_MKLDNN == 1
static void ActivationComputeExCPU(const nnvm::NodeAttrs& attrs,
const OpContext& ctx,
const std::vector<NDArray>& inputs,
const std::vector<OpReqType>& req,
const std::vector<NDArray>& outputs) {
const ActivationParam& param = nnvm::get<ActivationParam>(attrs.parsed);
CHECK_EQ(inputs.size(), 1U);
CHECK_EQ(outputs.size(), 1U);
if (SupportMKLDNNAct(param, inputs[0])) {
MKLDNN_OPCHECK_INIT(false, outputs.size(), inputs, outputs);
MKLDNNActivationForward(attrs, ctx, inputs[0], req[0], outputs[0]);
MKLDNN_OPCHECK_RUN(ActivationCompute<cpu>, attrs, ctx, inputs, req, outputs);
return;
}
FallBackCompute(ActivationComputeImpl<cpu>, attrs, ctx, inputs, req, outputs);
}
void ActivationGradComputeExCPU(const nnvm::NodeAttrs& attrs,
const OpContext& ctx,
const std::vector<NDArray>& inputs,
const std::vector<OpReqType>& req,
const std::vector<NDArray>& outputs) {
const ActivationParam& param = nnvm::get<ActivationParam>(attrs.parsed);
CHECK_EQ(inputs.size(), activation::GradNumInputs(param.act_type));
if (SupportMKLDNNAct(param, inputs[0])) {
MKLDNN_OPCHECK_INIT(true, outputs.size(), inputs, outputs);
// XXX: for y = relu(x), y is passed as "in_data" to Backward()
const bool relu = param.act_type == activation::kReLU;
MKLDNNActivationBackward(attrs, ctx, inputs.at(0), relu ? inputs.at(1) : inputs.at(2), req[0],
outputs[0]);
MKLDNN_OPCHECK_RUN(ActivationGradCompute<cpu>, attrs, ctx, inputs, req, outputs);
return;
}
FallBackCompute(ActivationGradComputeImpl<cpu>, attrs, ctx, inputs, req, outputs);
}
inline static bool ActivationStorageType(const nnvm::NodeAttrs& attrs,
const int dev_mask,
DispatchMode* dispatch_mode,
std::vector<int> *in_attrs,
std::vector<int> *out_attrs) {
CHECK_EQ(in_attrs->size(), 1);
CHECK_EQ(out_attrs->size(), 1);
const ActivationParam& param = nnvm::get<ActivationParam>(attrs.parsed);
return MKLDNNStorageType(attrs, dev_mask, SupportMKLDNNAct(param),
dispatch_mode, in_attrs, out_attrs);
}
inline static bool BackwardActStorageType(const nnvm::NodeAttrs& attrs,
const int dev_mask,
DispatchMode* dispatch_mode,
std::vector<int> *in_attrs,
std::vector<int> *out_attrs) {
const ActivationParam& param = nnvm::get<ActivationParam>(attrs.parsed);
CHECK_EQ(in_attrs->size(), activation::GradNumInputs(param.act_type));
return MKLDNNStorageType(attrs, dev_mask, SupportMKLDNNAct(param),
dispatch_mode, in_attrs, out_attrs);
}
#endif // MXNET_USE_MKLDNN == 1
MXNET_OPERATOR_REGISTER_UNARY(Activation)
.describe(R"code(Applies an activation function element-wise to the input.
The following activation functions are supported:
- `relu`: Rectified Linear Unit, :math:`y = max(x, 0)`
- `sigmoid`: :math:`y = \frac{1}{1 + exp(-x)}`
- `tanh`: Hyperbolic tangent, :math:`y = \frac{exp(x) - exp(-x)}{exp(x) + exp(-x)}`
- `softrelu`: Soft ReLU, or SoftPlus, :math:`y = log(1 + exp(x))`
- `softsign`: :math:`y = \frac{x}{1 + abs(x)}`
)code" ADD_FILELINE)
.set_attr_parser(ParamParser<ActivationParam>)
#if MXNET_USE_MKLDNN == 1
.set_attr<FInferStorageType>("FInferStorageType", ActivationStorageType)
#endif
.set_attr<nnvm::FListOutputNames>("FListOutputNames",
[](const NodeAttrs& attrs) {
return std::vector<std::string>{"output"};
})
.set_attr<FCompute>("FCompute<cpu>", ActivationCompute<cpu>)
#if MXNET_USE_MKLDNN == 1
.set_attr<bool>("TIsMKLDNN", true)
.set_attr<FComputeEx>("FComputeEx<cpu>", ActivationComputeExCPU)
#endif
.set_attr<nnvm::FGradient>("FGradient", ActivationGrad{"_backward_Activation"})
.add_arguments(ActivationParam::__FIELDS__());
NNVM_REGISTER_OP(_backward_Activation)
.set_num_inputs([](const nnvm::NodeAttrs& attrs) {
const int act_type = dmlc::get<ActivationParam>(attrs.parsed).act_type;
return activation::GradNumInputs(act_type);
})
.set_num_outputs(1)
.set_attr<nnvm::TIsBackward>("TIsBackward", true)
#if MXNET_USE_MKLDNN == 1
.set_attr<FInferStorageType>("FInferStorageType", BackwardActStorageType)
#endif
.set_attr<mxnet::FInferShape>("FInferShape", ElemwiseShape<-1, 1>)
.set_attr<nnvm::FInferType>("FInferType", ElemwiseType<-1, 1>)
.set_attr<nnvm::FInplaceOption>("FInplaceOption", [](const NodeAttrs& attrs){
return std::vector<std::pair<int, int> >{{0, 0}};
})
#if MXNET_USE_MKLDNN == 1
.set_attr<FResourceRequest>("FResourceRequest", [](const NodeAttrs& n) {
return std::vector<ResourceRequest>{ResourceRequest::kTempSpace};
})
#endif
.set_attr_parser(ParamParser<ActivationParam>)
#if MXNET_USE_MKLDNN == 1
.set_attr<bool>("TIsMKLDNN", true)
.set_attr<FComputeEx>("FComputeEx<cpu>", ActivationGradComputeExCPU)
#endif
.set_attr<FCompute>("FCompute<cpu>", ActivationGradCompute<cpu>);
} // namespace op
} // namespace mxnet