| /* |
| * Licensed to the Apache Software Foundation (ASF) under one |
| * or more contributor license agreements. See the NOTICE file |
| * distributed with this work for additional information |
| * regarding copyright ownership. The ASF licenses this file |
| * to you under the Apache License, Version 2.0 (the |
| * "License"); you may not use this file except in compliance |
| * with the License. You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, |
| * software distributed under the License is distributed on an |
| * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| * KIND, either express or implied. See the License for the |
| * specific language governing permissions and limitations |
| * under the License. |
| */ |
| |
| /*! |
| * Copyright (c) 2015 by Contributors |
| * \file leaky_relu-inl.h |
| * \brief leaky relu family operator |
| * \author Bing Xu |
| */ |
| #ifndef MXNET_OPERATOR_LEAKY_RELU_INL_H_ |
| #define MXNET_OPERATOR_LEAKY_RELU_INL_H_ |
| |
| #include <dmlc/logging.h> |
| #include <dmlc/parameter.h> |
| #include <mxnet/random_generator.h> |
| #include <mxnet/operator.h> |
| #include <cstring> |
| #include <map> |
| #include <string> |
| #include <vector> |
| #include <utility> |
| #include "./operator_common.h" |
| #include "./mshadow_op.h" |
| #include "./random/sampler.h" |
| #include "./random/sample_op.h" |
| #include "./tensor/elemwise_binary_broadcast_op.h" |
| |
| namespace mxnet { |
| namespace op { |
| |
| namespace leakyrelu { |
| enum LeakyReLUOpInputs {kData, kGamma}; |
| enum LeakyReLUOpOutputs {kOut, kMask}; |
| enum LeakyReLUOpType {kLeakyReLU, kPReLU, kRReLU, kELU, kSELU, kGELU}; |
| enum LeakyReLUOpResource {kRandom}; |
| } // namespace leakyrelu |
| |
| struct LeakyReLUParam : public dmlc::Parameter<LeakyReLUParam> { |
| // use int for enumeration |
| int act_type; |
| float slope; |
| float lower_bound; |
| float upper_bound; |
| DMLC_DECLARE_PARAMETER(LeakyReLUParam) { |
| DMLC_DECLARE_FIELD(act_type).set_default(leakyrelu::kLeakyReLU) |
| .add_enum("rrelu", leakyrelu::kRReLU) |
| .add_enum("leaky", leakyrelu::kLeakyReLU) |
| .add_enum("prelu", leakyrelu::kPReLU) |
| .add_enum("elu", leakyrelu::kELU) |
| .add_enum("selu", leakyrelu::kSELU) |
| .add_enum("gelu", leakyrelu::kGELU) |
| .describe("Activation function to be applied."); |
| DMLC_DECLARE_FIELD(slope).set_default(0.25f) |
| .describe("Init slope for the activation. (For leaky and elu only)"); |
| DMLC_DECLARE_FIELD(lower_bound).set_default(0.125f) |
| .describe("Lower bound of random slope. (For rrelu only)"); |
| DMLC_DECLARE_FIELD(upper_bound).set_default(0.334f) |
| .describe("Upper bound of random slope. (For rrelu only)"); |
| } |
| }; |
| |
| template<typename xpu, typename DType> |
| class LeakyReLUOp : public Operator { |
| public: |
| explicit LeakyReLUOp(LeakyReLUParam param) { |
| param_ = param; |
| } |
| |
| virtual void Forward(const OpContext &ctx, |
| const std::vector<TBlob> &in_data, |
| const std::vector<OpReqType> &req, |
| const std::vector<TBlob> &out_data, |
| const std::vector<TBlob> &aux_args) { |
| using namespace mshadow; |
| using namespace mshadow::expr; |
| size_t expected = param_.act_type == leakyrelu::kPReLU ? 2 : 1; |
| CHECK_EQ(in_data.size(), expected); |
| Stream<xpu> *s = ctx.get_stream<xpu>(); |
| Tensor<xpu, 3, DType> data; |
| Tensor<xpu, 3, DType> out; |
| Tensor<xpu, 3, DType> mask; |
| int n = in_data[leakyrelu::kData].shape_[0]; |
| int k = (in_data[leakyrelu::kData].ndim() > 1) ? in_data[leakyrelu::kData].shape_[1] : 1; |
| Shape<3> dshape = Shape3(n, k, in_data[leakyrelu::kData].Size()/n/k); |
| data = in_data[leakyrelu::kData].get_with_shape<xpu, 3, DType>(dshape, s); |
| out = out_data[leakyrelu::kOut].get_with_shape<xpu, 3, DType>(dshape, s); |
| if (req[leakyrelu::kOut] == kNullOp) { |
| return; |
| } |
| switch (param_.act_type) { |
| case leakyrelu::kLeakyReLU: { |
| MXNET_ASSIGN_REQ_SWITCH(req[leakyrelu::kOut], Req, { |
| mxnet_op::Kernel<mxnet_op::op_with_req<mshadow_op::xelu, Req>, xpu>::Launch( |
| s, out.size(0) * out.size(1) * out.size(2), out.dptr_, data.dptr_, DType(param_.slope)); |
| }); |
| break; |
| } |
| case leakyrelu::kPReLU: { |
| mxnet::TShape gshape = expand_shape(in_data[leakyrelu::kGamma].shape_, |
| in_data[leakyrelu::kData].shape_); |
| mxnet::TShape new_lshape, new_rshape, new_oshape; |
| const int ndim = op::BinaryBroadcastShapeCompact(in_data[leakyrelu::kData].shape_, |
| gshape, |
| out_data[leakyrelu::kOut].shape_, |
| &new_lshape, &new_rshape, &new_oshape); |
| if (!ndim) { |
| MXNET_ASSIGN_REQ_SWITCH(req[leakyrelu::kOut], Req, { |
| const size_t size = (minthree(out_data[leakyrelu::kOut].Size(), |
| in_data[leakyrelu::kData].Size(), |
| in_data[leakyrelu::kGamma].Size()) |
| + DataType<DType>::kLanes - 1) / DataType<DType>::kLanes; |
| mxnet_op::Kernel<mxnet_op::op_with_req<mshadow_op::xelu, Req>, xpu>::Launch( |
| s, size, out_data[leakyrelu::kOut].dptr<DType>(), |
| in_data[leakyrelu::kData].dptr<DType>(), in_data[leakyrelu::kGamma].dptr<DType>()); |
| }); |
| } else { |
| BROADCAST_NDIM_SWITCH(ndim, NDim, { |
| mshadow::Shape<NDim> oshape = new_oshape.get<NDim>(); |
| mshadow::Shape<NDim> lstride = mxnet_op::calc_stride(new_lshape.get<NDim>()); |
| mshadow::Shape<NDim> rstride = mxnet_op::calc_stride(new_rshape.get<NDim>()); |
| mxnet_op::Kernel<mxnet_op::binary_broadcast_kernel<NDim, DType, |
| mshadow_op::xelu>, xpu>:: |
| template LaunchEx(s, new_oshape.Size(), req[leakyrelu::kOut], lstride, rstride, oshape, |
| in_data[leakyrelu::kData].dptr<DType>(), in_data[leakyrelu::kGamma].dptr<DType>(), |
| out_data[leakyrelu::kOut].dptr<DType>()); |
| }); |
| } |
| break; |
| } |
| case leakyrelu::kRReLU: { |
| if (ctx.is_train) { |
| mask = out_data[leakyrelu::kMask].get_with_shape<xpu, 3, DType>(dshape, s); |
| mxnet::op::UniformSampler<xpu> sampler; |
| Tensor<xpu, 1, DType> low, high; |
| mxnet::op::GetSamplingTempData<xpu, DType>(DType(0.0f), DType(1.0f), ctx, &low, &high); |
| mxnet::common::random::RandGenerator<xpu, DType> *pgen = |
| ctx.requested[0].get_parallel_random<xpu, DType>(); |
| Tensor<xpu, 1, DType> out = mask.FlatTo1D(); |
| sampler.Sample(low, high, out, pgen, s); |
| MXNET_ASSIGN_REQ_SWITCH(req[leakyrelu::kMask], Req, { |
| mxnet_op::Kernel<mxnet_op::op_with_req<mshadow_op::mul, Req>, xpu>::Launch( |
| s, mask.size(0) * mask.size(1) * mask.size(2), mask.dptr_, mask.dptr_, |
| DType(param_.upper_bound - param_.lower_bound)); |
| }); |
| MXNET_ASSIGN_REQ_SWITCH(req[leakyrelu::kMask], Req, { |
| mxnet_op::Kernel<mxnet_op::op_with_req<mshadow_op::plus, Req>, xpu>::Launch( |
| s, mask.size(0) * mask.size(1) * mask.size(2), mask.dptr_, mask.dptr_, |
| DType(param_.lower_bound)); |
| }); |
| MXNET_ASSIGN_REQ_SWITCH(req[leakyrelu::kOut], Req, { |
| mxnet_op::Kernel<mxnet_op::op_with_req<mshadow_op::xelu, Req>, xpu>::Launch( |
| s, mask.size(0) * mask.size(1) * mask.size(2), out.dptr_, data.dptr_, mask.dptr_); |
| }); |
| } else { |
| const float slope = (param_.lower_bound + param_.upper_bound) / 2.0f; |
| MXNET_ASSIGN_REQ_SWITCH(req[leakyrelu::kOut], Req, { |
| mxnet_op::Kernel<mxnet_op::op_with_req<mshadow_op::xelu, Req>, xpu>::Launch( |
| s, out.size(0) * out.size(1) * out.size(2), out.dptr_, data.dptr_, DType(slope)); |
| }); |
| } |
| break; |
| } |
| case leakyrelu::kELU: { |
| MXNET_ASSIGN_REQ_SWITCH(req[leakyrelu::kOut], Req, { |
| mxnet_op::Kernel<mxnet_op::op_with_req<mshadow_op::elu, Req>, xpu>::Launch( |
| s, out.size(0) * out.size(1) * out.size(2), out.dptr_, data.dptr_, |
| DType(param_.slope)); |
| }); |
| break; |
| } |
| case leakyrelu::kSELU: { |
| MXNET_ASSIGN_REQ_SWITCH(req[leakyrelu::kOut], Req, { |
| mxnet_op::Kernel<mxnet_op::op_with_req<mshadow_op::selu, Req>, xpu>::Launch( |
| s, out.size(0) * out.size(1) * out.size(2), out.dptr_, data.dptr_); |
| }); |
| break; |
| } |
| case leakyrelu::kGELU: { |
| MXNET_ASSIGN_REQ_SWITCH(req[leakyrelu::kOut], Req, { |
| mxnet_op::Kernel<mxnet_op::op_with_req<mshadow_op::gelu, Req>, xpu>::Launch( |
| s, out.size(0) * out.size(1) * out.size(2), out.dptr_, data.dptr_); |
| }); |
| break; |
| } |
| default: |
| LOG(FATAL) << "Not implmented"; |
| } |
| } |
| |
| virtual void Backward(const OpContext & ctx, |
| const std::vector<TBlob> &out_grad, |
| const std::vector<TBlob> &in_data, |
| const std::vector<TBlob> &out_data, |
| const std::vector<OpReqType> &req, |
| const std::vector<TBlob> &in_grad, |
| const std::vector<TBlob> &aux_args) { |
| using namespace mshadow; |
| using namespace mshadow::expr; |
| size_t expected = param_.act_type == leakyrelu::kPReLU ? 2 : 1; |
| CHECK_EQ(out_grad.size(), 1U); |
| CHECK_EQ(req.size(), expected); |
| CHECK_EQ(in_data.size(), expected); |
| Stream<xpu> *s = ctx.get_stream<xpu>(); |
| Tensor<xpu, 3, DType> output; |
| Tensor<xpu, 3, DType> data; |
| Tensor<xpu, 3, DType> gdata; |
| Tensor<xpu, 3, DType> grad; |
| Tensor<xpu, 3, DType> mask; |
| int n = out_grad[leakyrelu::kOut].shape_[0]; |
| int k = (out_grad[leakyrelu::kOut].ndim() > 1) ? out_grad[leakyrelu::kOut].shape_[1] : 1; |
| Shape<3> dshape = Shape3(n, k, out_grad[leakyrelu::kOut].Size()/n/k); |
| grad = out_grad[leakyrelu::kOut].get_with_shape<xpu, 3, DType>(dshape, s); |
| gdata = in_grad[leakyrelu::kData].get_with_shape<xpu, 3, DType>(dshape, s); |
| output = out_data[leakyrelu::kOut].get_with_shape<xpu, 3, DType>(dshape, s); |
| if (param_.act_type == leakyrelu::kRReLU) { |
| mask = out_data[leakyrelu::kMask].get_with_shape<xpu, 3, DType>(dshape, s); |
| } |
| if (param_.act_type == leakyrelu::kPReLU || param_.act_type == leakyrelu::kGELU) { |
| data = in_data[leakyrelu::kData].get_with_shape<xpu, 3, DType>(dshape, s); |
| } |
| switch (param_.act_type) { |
| case leakyrelu::kLeakyReLU: { |
| MXNET_ASSIGN_REQ_SWITCH(req[leakyrelu::kData], Req, { |
| mxnet_op::Kernel<mxnet_op::op_with_req< |
| mxnet_op::backward_grad_tuned<mshadow_op::xelu_grad>, Req>, xpu>::Launch( |
| s, gdata.size(0) * gdata.size(1) * gdata.size(2), gdata.dptr_, grad.dptr_, |
| output.dptr_, DType(param_.slope)); |
| }); |
| break; |
| } |
| case leakyrelu::kPReLU: { |
| mxnet::TShape gshape = expand_shape(in_grad[leakyrelu::kGamma].shape_, |
| in_grad[leakyrelu::kData].shape_); |
| mxnet::TShape new_lshape, new_rshape, new_oshape; |
| const bool need_bc = BinaryBroadcastShapeCompact(in_grad[leakyrelu::kData].shape_, |
| gshape, |
| out_grad[leakyrelu::kOut].shape_, |
| &new_lshape, |
| &new_rshape, |
| &new_oshape) != 0; |
| if (!need_bc) { |
| ElemwiseBinaryOp::BackwardUseIn<xpu, |
| mshadow_op::xelu_grad, |
| mshadow_op::prelu_grad>( |
| nnvm::NodeAttrs(), ctx, {out_grad[leakyrelu::kOut], |
| in_data[leakyrelu::kData], |
| in_data[leakyrelu::kGamma]}, req, in_grad); |
| } else { |
| BROADCAST_NDIM_SWITCH(new_oshape.ndim(), NDim, { |
| BinaryBroadcastBackwardUseInImpl<xpu, NDim, DType, |
| mshadow_op::xelu_grad, mshadow_op::prelu_grad>( |
| ctx, {out_grad[leakyrelu::kOut], |
| in_data[leakyrelu::kData], |
| in_data[leakyrelu::kGamma]}, req, in_grad, |
| new_lshape, new_rshape, new_oshape); |
| }); |
| } |
| break; |
| } |
| case leakyrelu::kRReLU: { |
| Assign(gdata, req[leakyrelu::kData], F<mshadow_op::xelu_grad>(output, mask) * grad); |
| break; |
| } |
| case leakyrelu::kELU: { |
| MXNET_ASSIGN_REQ_SWITCH(req[leakyrelu::kData], Req, { |
| mxnet_op::Kernel<mxnet_op::op_with_req< |
| mxnet_op::backward_grad_tuned<mshadow_op::elu_grad>, Req>, xpu>::Launch( |
| s, gdata.size(0) * gdata.size(1) * gdata.size(2), gdata.dptr_, grad.dptr_, |
| output.dptr_, DType(param_.slope)); |
| }); |
| break; |
| } |
| case leakyrelu::kSELU: { |
| MXNET_ASSIGN_REQ_SWITCH(req[leakyrelu::kData], Req, { |
| mxnet_op::Kernel<mxnet_op::op_with_req< |
| mxnet_op::backward_grad_tuned<mshadow_op::selu_grad>, Req>, xpu>::Launch( |
| s, gdata.size(0) * gdata.size(1) * gdata.size(2), gdata.dptr_, grad.dptr_, |
| output.dptr_); |
| }); |
| break; |
| } |
| case leakyrelu::kGELU: { |
| MXNET_ASSIGN_REQ_SWITCH(req[leakyrelu::kData], Req, { |
| mxnet_op::Kernel<mxnet_op::op_with_req< |
| mxnet_op::backward_grad_tuned<mshadow_op::gelu_grad>, Req>, xpu>::Launch( |
| s, gdata.size(0) * gdata.size(1) * gdata.size(2), gdata.dptr_, grad.dptr_, |
| data.dptr_, output.dptr_); |
| }); |
| break; |
| } |
| default: |
| LOG(FATAL) << "Not implmented"; |
| } |
| } |
| |
| private: |
| /*! \brief Minimum of three */ |
| static MSHADOW_XINLINE size_t minthree(const size_t a, const size_t b, const size_t c) { |
| return a < b ? (a < c ? a : c) : (b < c ? b : c); |
| } |
| static inline mxnet::TShape expand_shape(const mxnet::TShape& src, const mxnet::TShape& dst) { |
| mxnet::TShape result(dst.ndim()); |
| int s = src.ndim() - 1; |
| for (int i = dst.ndim() - 1; i >= 0; i--) { |
| if (s >= 0 && i <= 1 && (dst[i] == src[s] || src[s] == 1)) { |
| result[i] = src[s]; |
| s--; |
| } else { |
| result[i] = 1; |
| } |
| } |
| CHECK(s == -1) << "Cannot broadcast gamma to data. gamma: " << src << ", data: " << dst; |
| return result; |
| } |
| LeakyReLUParam param_; |
| }; // class LeakyReLUOp |
| |
| template<typename xpu> |
| Operator* CreateOp(LeakyReLUParam type, int dtype); |
| |
| #if DMLC_USE_CXX11 |
| class LeakyReLUProp : public OperatorProperty { |
| public: |
| void Init(const std::vector<std::pair<std::string, std::string> >& kwargs) override { |
| param_.Init(kwargs); |
| } |
| |
| std::map<std::string, std::string> GetParams() const override { |
| return param_.__DICT__(); |
| } |
| |
| bool InferShape(mxnet::ShapeVector *in_shape, |
| mxnet::ShapeVector *out_shape, |
| mxnet::ShapeVector *aux_shape) const override { |
| using namespace mshadow; |
| if (param_.act_type == leakyrelu::kPReLU) { |
| CHECK_EQ(in_shape->size(), 2U) << "Input:[data, gamma]"; |
| } else { |
| CHECK_EQ(in_shape->size(), 1U) << "Input:[data]"; |
| } |
| const mxnet::TShape &dshape = in_shape->at(leakyrelu::kData); |
| if (dshape.ndim() == 0) return false; |
| if (param_.act_type == leakyrelu::kPReLU) { |
| const mxnet::TShape &gshape = in_shape->at(leakyrelu::kGamma); |
| if (gshape.ndim() == 0) { |
| in_shape->at(leakyrelu::kGamma) = mxnet::TShape(Shape1(dshape[1])); |
| } |
| if (dshape == gshape) { |
| SHAPE_ASSIGN_CHECK(*out_shape, 0, dshape); |
| } |
| } |
| out_shape->clear(); |
| out_shape->push_back(dshape); |
| if (param_.act_type == leakyrelu::kRReLU) { |
| out_shape->push_back(dshape); |
| } |
| return true; |
| } |
| |
| bool InferType(std::vector<int> *in_type, |
| std::vector<int> *out_type, |
| std::vector<int> *aux_type) const override { |
| int dtype = -1; |
| for (const int& type : *in_type) { |
| type_assign(&dtype, type); |
| } |
| for (const int& type : *out_type) { |
| type_assign(&dtype, type); |
| } |
| |
| for (size_t i = 0; i < in_type->size(); ++i) { |
| TYPE_ASSIGN_CHECK(*in_type, i, dtype); |
| } |
| for (size_t i = 0; i < out_type->size(); ++i) { |
| TYPE_ASSIGN_CHECK(*out_type, i, dtype); |
| } |
| return dtype != -1; |
| } |
| |
| OperatorProperty* Copy() const override { |
| auto ptr = new LeakyReLUProp(); |
| ptr->param_ = param_; |
| return ptr; |
| } |
| |
| std::string TypeString() const override { |
| return "LeakyReLU"; |
| } |
| |
| // decalre dependency and inplace optimization options |
| std::vector<int> DeclareBackwardDependency( |
| const std::vector<int> &out_grad, |
| const std::vector<int> &in_data, |
| const std::vector<int> &out_data) const override { |
| if (param_.act_type == leakyrelu::kPReLU) { |
| return {out_grad[leakyrelu::kOut], |
| out_data[leakyrelu::kOut], |
| in_data[leakyrelu::kData], |
| in_data[leakyrelu::kGamma]}; |
| } else if (param_.act_type == leakyrelu::kRReLU) { |
| return {out_grad[leakyrelu::kOut], out_data[leakyrelu::kMask], out_data[leakyrelu::kOut]}; |
| } else { |
| return {out_grad[leakyrelu::kOut], out_data[leakyrelu::kData]}; |
| } |
| } |
| |
| std::vector<std::pair<int, void*> > BackwardInplaceOption( |
| const std::vector<int> &out_grad, |
| const std::vector<int> &in_data, |
| const std::vector<int> &out_data, |
| const std::vector<void*> &in_grad) const override { |
| return {{out_grad[leakyrelu::kOut], in_grad[leakyrelu::kData]}}; |
| } |
| |
| std::vector<std::pair<int, void*> > ForwardInplaceOption( |
| const std::vector<int> &in_data, |
| const std::vector<void*> &out_data) const override { |
| if (param_.act_type == leakyrelu::kPReLU) { |
| return {}; |
| } else { |
| return {{in_data[leakyrelu::kData], out_data[leakyrelu::kOut]}}; |
| } |
| } |
| |
| std::vector<std::string> ListArguments() const override { |
| if (param_.act_type == leakyrelu::kPReLU) { |
| return {"data", "gamma"}; |
| } else { |
| return {"data"}; |
| } |
| } |
| |
| std::vector<std::string> ListOutputs() const override { |
| if (param_.act_type == leakyrelu::kRReLU) { |
| return {"output", "mask"}; |
| } else { |
| return {"output"}; |
| } |
| } |
| |
| int NumOutputs() const override { |
| if (param_.act_type == leakyrelu::kRReLU) { |
| return 2; |
| } else { |
| return 1; |
| } |
| } |
| |
| int NumVisibleOutputs() const override { |
| return 1; |
| } |
| |
| std::vector<ResourceRequest> ForwardResource( |
| const mxnet::ShapeVector &in_shape) const override { |
| if (param_.act_type == leakyrelu::kRReLU) { |
| return {ResourceRequest::kRandom}; |
| } else { |
| return std::vector<ResourceRequest>(); |
| } |
| } |
| |
| std::vector<ResourceRequest> BackwardResource( |
| const mxnet::ShapeVector &in_shape) const override { |
| return {ResourceRequest::kTempSpace}; |
| } |
| |
| Operator* CreateOperator(Context ctx) const override { |
| LOG(FATAL) << "Not Implemented."; |
| return NULL; |
| } |
| |
| Operator* CreateOperatorEx(Context ctx, mxnet::ShapeVector *in_shape, |
| std::vector<int> *in_type) const override; |
| |
| private: |
| LeakyReLUParam param_; |
| }; |
| #endif // DMLC_USE_CXX11 |
| } // namespace op |
| } // namespace mxnet |
| |
| #endif // MXNET_OPERATOR_LEAKY_RELU_INL_H_ |
| |