blob: 4973be9a1e3d5a929ecdf1cf94b3fdb0d92a5046 [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*!
* Copyright (c) 2015 by Contributors
* \file native_op-inl.h
* \brief
* \author Junyuan Xie
*/
#ifndef MXNET_OPERATOR_CUSTOM_NDARRAY_OP_INL_H_
#define MXNET_OPERATOR_CUSTOM_NDARRAY_OP_INL_H_
#include <dmlc/logging.h>
#include <dmlc/parameter.h>
#include <mxnet/operator.h>
#include <mxnet/c_api.h>
#include <map>
#include <vector>
#include <string>
#include <utility>
#include <sstream>
#include "../operator_common.h"
namespace mxnet {
namespace op {
struct NDArrayOpParam : public dmlc::Parameter<NDArrayOpParam> {
void *info;
NDArrayOpInfo *pinfo;
int num_inputs_, num_outputs_;
DMLC_DECLARE_PARAMETER(NDArrayOpParam) {
DMLC_DECLARE_FIELD(info);
}
};
template<typename xpu>
class NDArrayOp : public Operator {
public:
explicit NDArrayOp(NDArrayOpParam p) {
this->param_ = p;
}
virtual void Forward(const OpContext &ctx,
const std::vector<TBlob> &in_data,
const std::vector<OpReqType> &req,
const std::vector<TBlob> &out_data,
const std::vector<TBlob> &aux_args);
virtual void Backward(const OpContext &ctx,
const std::vector<TBlob> &out_grad,
const std::vector<TBlob> &in_data,
const std::vector<TBlob> &out_data,
const std::vector<OpReqType> &req,
const std::vector<TBlob> &in_grad,
const std::vector<TBlob> &aux_args);
private:
NDArrayOpParam param_;
Context get_ctx();
}; // NDArrayOp
template<typename xpu>
Operator* CreateOp(NDArrayOpParam param);
#if DMLC_USE_CXX11
class NDArrayOpProp : public OperatorProperty {
public:
std::vector<std::string> ListArguments() const override {
char ** args = NULL;
CHECK(param_.pinfo->list_arguments(&args, param_.pinfo->p_list_arguments));
std::vector<std::string> ret;
for (int i = 0; args[i] != NULL; ++i) {
ret.emplace_back(args[i]);
}
return ret;
}
std::vector<std::string> ListOutputs() const override {
char ** args = NULL;
CHECK(param_.pinfo->list_outputs(&args, param_.pinfo->p_list_outputs));
std::vector<std::string> ret;
for (int i = 0; args[i] != NULL; ++i) {
ret.emplace_back(args[i]);
}
return ret;
}
int NumOutputs() const override {
return param_.num_outputs_;
}
void Init(const std::vector<std::pair<std::string, std::string> >& kwargs) override {
param_.Init(kwargs);
for (auto iter = kwargs.begin(); iter != kwargs.end(); ++iter) {
if (iter->first == "info") {
sscanf(iter->second.c_str(), "%p", &param_.pinfo);
}
}
param_.num_inputs_ = ListArguments().size();
param_.num_outputs_ = ListOutputs().size();
}
std::map<std::string, std::string> GetParams() const override {
return param_.__DICT__();
}
bool InferShape(mxnet::ShapeVector *in_shape,
mxnet::ShapeVector *out_shape,
mxnet::ShapeVector *aux_shape) const override {
std::vector<uint32_t*> shapes;
std::vector<int> ndims;
size_t size = 0;
for (const auto& s : *in_shape) size += s.ndim();
std::vector<uint32_t> shapes_buffer(size);
uint32_t *ptr = shapes_buffer.data();
for (const auto& shape : *in_shape) {
shapes.push_back(ptr);
ndims.push_back(shape.ndim());
ptr = nnvm::ShapeTypeCast(shape.begin(), shape.end(), ptr);
}
shapes.resize(param_.num_inputs_+param_.num_outputs_);
ndims.resize(param_.num_inputs_+param_.num_outputs_);
CHECK(param_.pinfo->infer_shape(shapes.size(), ndims.data(), shapes.data(),
param_.pinfo->p_infer_shape));
for (unsigned i = 0; i < in_shape->size(); ++i) {
SHAPE_ASSIGN_CHECK(*in_shape, i, mxnet::TShape(shapes[i], shapes[i]+ndims[i]));
}
out_shape->clear();
for (unsigned i = param_.num_inputs_; i < shapes.size(); ++i) {
out_shape->push_back(mxnet::TShape(shapes[i], shapes[i]+ndims[i]));
}
return true;
}
OperatorProperty* Copy() const override {
NDArrayOpProp *prop_sym = new NDArrayOpProp();
prop_sym->param_ = this->param_;
return prop_sym;
}
std::string TypeString() const override {
return "_NDArray";
}
std::vector<int> DeclareBackwardDependency(
const std::vector<int> &out_grad,
const std::vector<int> &in_data,
const std::vector<int> &out_data) const override {
int num_dep;
int *rdeps;
CHECK(param_.pinfo->declare_backward_dependency(out_grad.data(), in_data.data(),
out_data.data(), &num_dep, &rdeps,
param_.pinfo->p_declare_backward_dependency));
std::vector<int> deps;
deps.insert(deps.end(), rdeps, rdeps+num_dep);
return deps;
}
std::vector<std::pair<int, void*> > BackwardInplaceOption(
const std::vector<int> &out_grad,
const std::vector<int> &in_data,
const std::vector<int> &out_data,
const std::vector<void*> &in_grad) const override {
return {};
}
Operator* CreateOperator(Context ctx) const override;
ExecType exec_type() const override {
return ExecType::kAsync;
}
private:
NDArrayOpParam param_;
}; // class PythonProp
#endif // DMLC_USE_CXX11
} // namespace op
} // namespace mxnet
#endif // MXNET_OPERATOR_CUSTOM_NDARRAY_OP_INL_H_