| /* |
| * Licensed to the Apache Software Foundation (ASF) under one |
| * or more contributor license agreements. See the NOTICE file |
| * distributed with this work for additional information |
| * regarding copyright ownership. The ASF licenses this file |
| * to you under the Apache License, Version 2.0 (the |
| * "License"); you may not use this file except in compliance |
| * with the License. You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, |
| * software distributed under the License is distributed on an |
| * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| * KIND, either express or implied. See the License for the |
| * specific language governing permissions and limitations |
| * under the License. |
| */ |
| |
| /*! |
| * Copyright (c) 2017 Microsoft |
| * Licensed under The Apache-2.0 License [see LICENSE for details] |
| * \file deformable_psroi_pooling-inl.h |
| * \brief deformable psroi pooling operator and symbol |
| * \author Yi Li, Guodong Zhang, Jifeng Dai |
| */ |
| #ifndef MXNET_OPERATOR_CONTRIB_DEFORMABLE_PSROI_POOLING_INL_H_ |
| #define MXNET_OPERATOR_CONTRIB_DEFORMABLE_PSROI_POOLING_INL_H_ |
| |
| #include <dmlc/logging.h> |
| #include <dmlc/parameter.h> |
| #include <mxnet/operator.h> |
| #include <map> |
| #include <vector> |
| #include <string> |
| #include <utility> |
| #include "../mshadow_op.h" |
| #include "../operator_common.h" |
| |
| |
| namespace mxnet { |
| namespace op { |
| |
| // Declare enumeration of input order to make code more intuitive. |
| // These enums are only visible within this header |
| namespace deformablepsroipool { |
| enum DeformablePSROIPoolingOpInputs { kData, kBox, kTrans }; |
| enum DeformablePSROIPoolingOpOutputs { kOut, kTopCount }; |
| } // deformablepsroipool |
| |
| struct DeformablePSROIPoolingParam : public dmlc::Parameter<DeformablePSROIPoolingParam> { |
| // mxnet::TShape pooled_size; |
| float spatial_scale; |
| int output_dim; |
| int group_size; |
| int pooled_size; |
| int part_size; |
| int sample_per_part; |
| float trans_std; |
| bool no_trans; |
| DMLC_DECLARE_PARAMETER(DeformablePSROIPoolingParam) { |
| DMLC_DECLARE_FIELD(spatial_scale).set_range(0.0, 1.0) |
| .describe("Ratio of input feature map height (or w) to raw image height (or w). " |
| "Equals the reciprocal of total stride in convolutional layers"); |
| DMLC_DECLARE_FIELD(output_dim).describe("fix output dim"); |
| DMLC_DECLARE_FIELD(group_size).describe("fix group size"); |
| DMLC_DECLARE_FIELD(pooled_size).describe("fix pooled size"); |
| DMLC_DECLARE_FIELD(part_size).set_default(0).describe("fix part size"); |
| DMLC_DECLARE_FIELD(sample_per_part).set_default(1).describe("fix samples per part"); |
| DMLC_DECLARE_FIELD(trans_std).set_default(0.0).set_range(0.0, 1.0) |
| .describe("fix transition std"); |
| DMLC_DECLARE_FIELD(no_trans).set_default(false) |
| .describe("Whether to disable trans parameter."); |
| } |
| }; |
| |
| template<typename xpu, typename DType> |
| class DeformablePSROIPoolingOp : public Operator { |
| public: |
| explicit DeformablePSROIPoolingOp(DeformablePSROIPoolingParam p) { |
| this->param_ = p; |
| } |
| |
| virtual void Forward(const OpContext &ctx, |
| const std::vector<TBlob> &in_data, |
| const std::vector<OpReqType> &req, |
| const std::vector<TBlob> &out_data, |
| const std::vector<TBlob> &aux_args) { |
| using namespace mshadow; |
| size_t in_expected = param_.no_trans? 2 : 3; |
| size_t out_expected = 2; |
| CHECK_EQ(in_data.size(), in_expected); |
| CHECK_EQ(out_data.size(), out_expected); |
| CHECK_EQ(out_data[deformablepsroipool::kOut].shape_[0], |
| in_data[deformablepsroipool::kBox].shape_[0]); |
| CHECK_EQ(out_data[deformablepsroipool::kTopCount].shape_[0], |
| in_data[deformablepsroipool::kBox].shape_[0]); |
| Stream<xpu> *s = ctx.get_stream<xpu>(); |
| |
| Tensor<xpu, 4, DType> data = in_data[deformablepsroipool::kData].get<xpu, 4, DType>(s); |
| Tensor<xpu, 2, DType> bbox = in_data[deformablepsroipool::kBox].get<xpu, 2, DType>(s); |
| Tensor<xpu, 4, DType> out = out_data[deformablepsroipool::kOut].get<xpu, 4, DType>(s); |
| Tensor<xpu, 4, DType> top_count = out_data[deformablepsroipool::kTopCount] |
| .get<xpu, 4, DType>(s); |
| CHECK_EQ(data.CheckContiguous(), true); |
| CHECK_EQ(bbox.CheckContiguous(), true); |
| CHECK_EQ(out.CheckContiguous(), true); |
| CHECK_EQ(top_count.CheckContiguous(), true); |
| out = -FLT_MAX; |
| top_count = 0.0f; |
| |
| Tensor<xpu, 4, DType> trans; |
| if (!param_.no_trans) { |
| trans = in_data[deformablepsroipool::kTrans].get<xpu, 4, DType>(s); |
| } |
| DeformablePSROIPoolForward(out, data, bbox, trans, top_count, param_.no_trans, |
| param_.spatial_scale, param_.output_dim, param_.group_size, param_.pooled_size, |
| param_.part_size, param_.sample_per_part, param_.trans_std); |
| } |
| |
| virtual void Backward(const OpContext &ctx, |
| const std::vector<TBlob> &out_grad, |
| const std::vector<TBlob> &in_data, |
| const std::vector<TBlob> &out_data, |
| const std::vector<OpReqType> &req, |
| const std::vector<TBlob> &in_grad, |
| const std::vector<TBlob> &aux_args) { |
| using namespace mshadow; |
| size_t in_expected = param_.no_trans ? 2 : 3; |
| size_t out_expected = 2; |
| CHECK_EQ(in_data.size(), in_expected); |
| CHECK_EQ(out_data.size(), out_expected); |
| CHECK_EQ(out_grad[deformablepsroipool::kOut].shape_[0], |
| in_data[deformablepsroipool::kBox].shape_[0]); |
| CHECK_EQ(out_data[deformablepsroipool::kTopCount].shape_[0], |
| in_data[deformablepsroipool::kBox].shape_[0]); |
| CHECK_NE(req[deformablepsroipool::kData], kWriteInplace) << |
| "DeformablePSROIPooling: Backward doesn't support kWriteInplace."; |
| CHECK_NE(req[deformablepsroipool::kBox], kWriteInplace) << |
| "DeformablePSROIPooling: Backward doesn't support kWriteInplace."; |
| // CHECK_NE(req[deformablepsroipool::kTrans], kWriteInplace) << |
| // "DeformablePSROIPooling: Backward doesn't support kWriteInplace."; |
| Stream<xpu> *s = ctx.get_stream<xpu>(); |
| |
| Tensor<xpu, 4, DType> grad_out = out_grad[deformablepsroipool::kOut].get<xpu, 4, DType>(s); |
| Tensor<xpu, 4, DType> data = in_data[deformablepsroipool::kData].get<xpu, 4, DType>(s); |
| Tensor<xpu, 2, DType> bbox = in_data[deformablepsroipool::kBox].get<xpu, 2, DType>(s); |
| Tensor<xpu, 4, DType> top_count = out_data[deformablepsroipool::kTopCount] |
| .get<xpu, 4, DType>(s); |
| Tensor<xpu, 4, DType> grad_in = in_grad[deformablepsroipool::kData].get<xpu, 4, DType>(s); |
| Tensor<xpu, 2, DType> grad_roi = in_grad[deformablepsroipool::kBox].get<xpu, 2, DType>(s); |
| Tensor<xpu, 4, DType> grad_trans; |
| Tensor<xpu, 4, DType> trans; |
| if (!param_.no_trans) { |
| CHECK_EQ(in_grad.size(), 3); |
| trans = in_data[deformablepsroipool::kTrans].get<xpu, 4, DType>(s); |
| grad_trans = in_grad[deformablepsroipool::kTrans].get<xpu, 4, DType>(s); |
| } |
| |
| CHECK_EQ(grad_out.CheckContiguous(), true); |
| CHECK_EQ(data.CheckContiguous(), true); |
| CHECK_EQ(bbox.CheckContiguous(), true); |
| CHECK_EQ(top_count.CheckContiguous(), true); |
| CHECK_EQ(grad_in.CheckContiguous(), true); |
| |
| Assign(grad_in, req[deformablepsroipool::kData], 0); |
| if (!param_.no_trans) { |
| Assign(grad_trans, req[deformablepsroipool::kTrans], 0); |
| } |
| DeformablePSROIPoolBackwardAcc(grad_in, grad_trans, grad_out, data, bbox, trans, |
| top_count, param_.no_trans, param_.spatial_scale, param_.output_dim, param_.group_size, |
| param_.pooled_size, param_.part_size, param_.sample_per_part, param_.trans_std); |
| Assign(grad_roi, req[deformablepsroipool::kBox], 0); |
| } |
| |
| private: |
| DeformablePSROIPoolingParam param_; |
| }; // class DeformablePSROIPoolingOp |
| |
| // Decalre Factory function, used for dispatch specialization |
| template<typename xpu> |
| Operator* CreateOp(DeformablePSROIPoolingParam param, int dtype); |
| |
| #if DMLC_USE_CXX11 |
| class DeformablePSROIPoolingProp : public OperatorProperty { |
| public: |
| std::vector<std::string> ListArguments() const override { |
| if (param_.no_trans) { |
| return{ "data", "rois" }; |
| } else { |
| return{ "data", "rois", "trans" }; |
| } |
| } |
| |
| std::vector<std::string> ListOutputs() const override { |
| return{ "output", "top_count" }; |
| } |
| |
| int NumOutputs() const override { |
| return 2; |
| } |
| |
| int NumVisibleOutputs() const override { |
| return 1; |
| } |
| |
| void Init(const std::vector<std::pair<std::string, std::string> >& kwargs) override { |
| param_.Init(kwargs); |
| if (param_.part_size == 0) { |
| param_.part_size = param_.pooled_size; |
| } |
| } |
| |
| std::map<std::string, std::string> GetParams() const override { |
| return param_.__DICT__(); |
| } |
| |
| bool InferShape(mxnet::ShapeVector *in_shape, |
| mxnet::ShapeVector *out_shape, |
| mxnet::ShapeVector *aux_shape) const override { |
| using namespace mshadow; |
| if (param_.no_trans) { |
| CHECK_EQ(in_shape->size(), 2) << "Input:[data, rois]"; |
| } else { |
| CHECK_EQ(in_shape->size(), 3) << "Input:[data, rois, trans]"; |
| // trans: [num_rois, 2, pooled_h, pooled_w] |
| mxnet::TShape tshape = in_shape->at(deformablepsroipool::kTrans); |
| CHECK_EQ(tshape.ndim(), 4) << "trans should be a 4D tensor of shape"; |
| } |
| |
| // data: [batch_size, c, h, w] |
| mxnet::TShape dshape = in_shape->at(deformablepsroipool::kData); |
| CHECK_EQ(dshape.ndim(), 4) << "data should be a 4D tensor"; |
| |
| // bbox: [num_rois, 5] |
| mxnet::TShape bshape = in_shape->at(deformablepsroipool::kBox); |
| CHECK_EQ(bshape.ndim(), 2) << "bbox should be a 2D tensor of shape [batch, 5]"; |
| CHECK_EQ(bshape[1], 5) << "bbox should be a 2D tensor of shape [batch, 5]"; |
| |
| // out: [num_rois, c, pooled_h, pooled_w] |
| // top_count: [num_rois, c, pooled_h, pooled_w] |
| out_shape->clear(); |
| out_shape->push_back( |
| Shape4(bshape[0], param_.output_dim, param_.pooled_size, param_.pooled_size)); |
| out_shape->push_back( |
| Shape4(bshape[0], param_.output_dim, param_.pooled_size, param_.pooled_size)); |
| return true; |
| } |
| |
| bool InferType(std::vector<int> *in_type, |
| std::vector<int> *out_type, |
| std::vector<int> *aux_type) const override { |
| CHECK_GE(in_type->size(), 2); |
| int dtype = (*in_type)[0]; |
| CHECK_EQ(dtype, (*in_type)[1]); |
| CHECK_NE(dtype, -1) << "Input must have specified type"; |
| |
| out_type->clear(); |
| out_type->push_back(dtype); |
| out_type->push_back(dtype); |
| return true; |
| } |
| |
| OperatorProperty* Copy() const override { |
| DeformablePSROIPoolingProp* deformable_psroi_pooling_sym = new DeformablePSROIPoolingProp(); |
| deformable_psroi_pooling_sym->param_ = this->param_; |
| return deformable_psroi_pooling_sym; |
| } |
| |
| std::string TypeString() const override { |
| return "_contrib_DeformablePSROIPooling"; |
| } |
| |
| // decalre dependency and inplace optimization options |
| std::vector<int> DeclareBackwardDependency( |
| const std::vector<int> &out_grad, |
| const std::vector<int> &in_data, |
| const std::vector<int> &out_data) const override { |
| if (param_.no_trans) { |
| return{ out_grad[deformablepsroipool::kOut], in_data[deformablepsroipool::kData], |
| in_data[deformablepsroipool::kBox], out_data[deformablepsroipool::kTopCount] }; |
| } else { |
| return{ out_grad[deformablepsroipool::kOut], in_data[deformablepsroipool::kData], |
| in_data[deformablepsroipool::kBox], in_data[deformablepsroipool::kTrans], |
| out_data[deformablepsroipool::kTopCount] }; |
| } |
| } |
| |
| |
| Operator* CreateOperator(Context ctx) const override { |
| LOG(FATAL) << "Not Implemented."; |
| return NULL; |
| } |
| |
| Operator* CreateOperatorEx(Context ctx, mxnet::ShapeVector *in_shape, |
| std::vector<int> *in_type) const override; |
| |
| |
| private: |
| DeformablePSROIPoolingParam param_; |
| }; // class DeformablePSROIPoolingProp |
| #endif |
| } // namespace op |
| } // namespace mxnet |
| #endif // MXNET_OPERATOR_CONTRIB_DEFORMABLE_PSROI_POOLING_INL_H_ |