| /* |
| * Licensed to the Apache Software Foundation (ASF) under one |
| * or more contributor license agreements. See the NOTICE file |
| * distributed with this work for additional information |
| * regarding copyright ownership. The ASF licenses this file |
| * to you under the Apache License, Version 2.0 (the |
| * "License"); you may not use this file except in compliance |
| * with the License. You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, |
| * software distributed under the License is distributed on an |
| * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| * KIND, either express or implied. See the License for the |
| * specific language governing permissions and limitations |
| * under the License. |
| */ |
| /*! |
| * Copyright (c) 2018 by Contributors |
| * \file boolean_mask.cu |
| */ |
| |
| #include "./boolean_mask-inl.h" |
| #include <cub/cub.cuh> |
| |
| namespace mxnet { |
| namespace op { |
| |
| template<> |
| inline void BooleanMaskForward<gpu>(const nnvm::NodeAttrs& attrs, |
| const OpContext &ctx, |
| const std::vector<NDArray> &inputs, |
| const std::vector<OpReqType> &req, |
| const std::vector<NDArray> &outputs) { |
| using namespace mshadow; |
| CHECK_EQ(inputs.size(), 2U); |
| CHECK_EQ(outputs.size(), 1U); |
| const BooleanMaskParam& param = nnvm::get<BooleanMaskParam>(attrs.parsed); |
| const int axis = param.axis; |
| const NDArray &data = inputs[0]; |
| const NDArray &idx = inputs[1]; |
| const NDArray &out = outputs[0]; |
| CHECK_EQ(axis, 0) << "Not supported yet"; |
| CHECK_EQ(data.shape()[axis], idx.shape()[0]); |
| CHECK_EQ(idx.shape().ndim(), 1U); |
| Stream<gpu>* s = ctx.get_stream<gpu>(); |
| // count the number of 1s in `idx`, so that we could know the output dimension |
| size_t idx_size = idx.shape()[0]; |
| int32_t valid_num = 0; |
| int32_t* prefix_sum = nullptr; |
| void* d_temp_storage = nullptr; |
| size_t temp_storage_bytes = 0; |
| // Calculate total temporary memory size |
| cub::DeviceScan::InclusiveSum(d_temp_storage, |
| temp_storage_bytes, |
| prefix_sum, |
| prefix_sum, |
| idx_size, |
| Stream<gpu>::GetStream(s)); |
| size_t buffer_size = idx_size * sizeof(int32_t); |
| temp_storage_bytes += buffer_size; |
| // Allocate memory on GPU and allocate pointer |
| Tensor<gpu, 1, char> workspace = |
| ctx.requested[0].get_space_typed<gpu, 1, char>(Shape1(temp_storage_bytes), s); |
| prefix_sum = reinterpret_cast<int32_t*>(workspace.dptr_); |
| d_temp_storage = workspace.dptr_ + buffer_size; |
| MSHADOW_TYPE_SWITCH(idx.dtype(), IType, { |
| mxnet_op::Kernel<mshadow_op::identity_with_cast, gpu>::Launch( |
| s, idx.shape()[0], prefix_sum, idx.data().dptr<IType>()); |
| }); |
| // Calculate prefix sum |
| cub::DeviceScan::InclusiveSum(d_temp_storage, |
| temp_storage_bytes, |
| prefix_sum, |
| prefix_sum, |
| idx_size, |
| Stream<gpu>::GetStream(s)); |
| CUDA_CALL(cudaMemcpy(&valid_num, &prefix_sum[idx_size - 1], sizeof(int32_t), |
| cudaMemcpyDeviceToHost)); |
| CHECK(valid_num > 0) << "boolean_mask behavior not defined when all masks are 0"; |
| // Set the output shape forcefully |
| mxnet::TShape data_shape = data.shape(); |
| data_shape[axis] = valid_num; |
| const_cast<NDArray &>(out).Init(data_shape); |
| size_t input_size = data.shape().Size(); |
| size_t col_size = input_size / idx.shape()[0]; |
| // Do the copy |
| MSHADOW_TYPE_SWITCH(out.dtype(), DType, { |
| mxnet_op::Kernel<BooleanMaskForwardKernel, gpu>::Launch( |
| s, input_size, out.data().dptr<DType>(), data.data().dptr<DType>(), prefix_sum, col_size); |
| }); |
| } |
| |
| template<> |
| inline void BooleanMaskBackward<gpu>(const nnvm::NodeAttrs& attrs, |
| const OpContext &ctx, |
| const std::vector<NDArray> &inputs, |
| const std::vector<OpReqType> &req, |
| const std::vector<NDArray> &outputs) { |
| using namespace mshadow; |
| CHECK_EQ(inputs.size(), 3U); |
| CHECK_EQ(outputs.size(), 2U); |
| // inputs: {ograd, data, idx} |
| // outputs: {igrad_data, igrad_idx} |
| const NDArray& ograd = inputs[0]; |
| const NDArray& idx = inputs[2]; |
| const NDArray& igrad_data = outputs[0]; |
| Stream<gpu>* s = ctx.get_stream<gpu>(); |
| // Count the number of 1s in `idx`, so that we could know the output dimension |
| size_t idx_size = idx.shape()[0]; |
| int32_t* prefix_sum = nullptr; |
| void* d_temp_storage = nullptr; |
| size_t temp_storage_bytes = 0; |
| // Calculate total temporary memory size |
| cub::DeviceScan::InclusiveSum(d_temp_storage, |
| temp_storage_bytes, |
| prefix_sum, |
| prefix_sum, |
| idx_size, |
| Stream<gpu>::GetStream(s)); |
| size_t buffer_size = idx_size * sizeof(int32_t); |
| temp_storage_bytes += buffer_size; |
| // Allocate memory on GPU and allocate pointer |
| Tensor<gpu, 1, char> workspace = |
| ctx.requested[0].get_space_typed<gpu, 1, char>(Shape1(temp_storage_bytes), s); |
| prefix_sum = reinterpret_cast<int32_t*>(workspace.dptr_); |
| d_temp_storage = workspace.dptr_ + buffer_size; |
| MSHADOW_TYPE_SWITCH(idx.dtype(), IType, { |
| mxnet_op::Kernel<mshadow_op::identity_with_cast, gpu>::Launch( |
| s, idx.shape()[0], prefix_sum, idx.data().dptr<IType>()); |
| }); |
| // Calculate prefix sum |
| cub::DeviceScan::InclusiveSum(d_temp_storage, |
| temp_storage_bytes, |
| prefix_sum, |
| prefix_sum, |
| idx_size, |
| Stream<gpu>::GetStream(s)); |
| size_t input_size = igrad_data.shape().Size(); |
| size_t col_size = input_size / idx_size; |
| // Backward pass |
| MSHADOW_TYPE_SWITCH(igrad_data.dtype(), DType, { |
| mxnet_op::Kernel<BooleanMaskBackwardKernel, gpu>::Launch( |
| s, input_size, igrad_data.data().dptr<DType>(), ograd.data().dptr<DType>(), |
| prefix_sum, col_size); |
| }); |
| } |
| |
| NNVM_REGISTER_OP(_contrib_boolean_mask) |
| .set_attr<FResourceRequest>("FResourceRequest", |
| [](const NodeAttrs& attrs) { |
| return std::vector<ResourceRequest>{ResourceRequest::kTempSpace}; |
| }) |
| .set_attr<FComputeEx>("FComputeEx<gpu>", BooleanMaskForward<gpu>); |
| |
| NNVM_REGISTER_OP(_backward_contrib_boolean_mask) |
| .set_attr<FResourceRequest>("FResourceRequest", |
| [](const NodeAttrs& attrs) { |
| return std::vector<ResourceRequest>{ResourceRequest::kTempSpace}; |
| }) |
| .set_attr<FComputeEx>("FComputeEx<gpu>", BooleanMaskBackward<gpu>); |
| |
| } // namespace op |
| } // namespace mxnet |