blob: 1288e9d226918bc972a3233b6dcc007fa6485239 [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*!
* Copyright (c) 2018 by Contributors
* \file bilinear_resize.cc
* \brief bilinear resize operator
* \author Hang Zhang
*/
#include "bilinear_resize-inl.h"
// #include "elemwise_op_common.h"
#include "../elemwise_op_common.h"
namespace mxnet {
namespace op {
using namespace mshadow;
template<typename xpu, typename DType, typename AccReal>
void SpatialUpSamplingBilinearUpdateOutput(mshadow::Stream<cpu> *s,
const std::vector<TBlob> &input,
const std::vector<TBlob> &output) {
Tensor<xpu, 4, DType> itensor = input[0].get<xpu, 4, DType>(s);
Tensor<xpu, 4, DType> otensor = output[0].get<xpu, 4, DType>(s);
int nbatch = otensor.size(0);
int channels = otensor.size(1);
int outputHeight = otensor.size(2);
int outputWidth = otensor.size(3);
int inputHeight = itensor.size(2);
int inputWidth = itensor.size(3);
DType *idata = itensor.dptr_;
DType *odata = otensor.dptr_;
channels = nbatch * channels;
// special case: just copy
if (inputHeight == outputHeight && inputWidth == outputWidth) {
for (int h2 = 0; h2 < outputHeight; ++h2) {
const int h1 = h2;
for (int w2 = 0; w2 < outputWidth; ++w2) {
const int w1 = w2;
const DType* pos1 = &idata[h1 * inputWidth + w1];
DType* pos2 = &odata[h2 * outputWidth + w2];
for (int c = 0; c < channels; ++c) {
pos2[0] = pos1[0];
pos1 += inputWidth * inputHeight;
pos2 += outputWidth * outputHeight;
}
}
}
return;
}
const float rheight =(outputHeight > 1) ? static_cast<float>(inputHeight - 1)/
(outputHeight - 1) : 0.f;
const float rwidth = (outputWidth > 1) ? static_cast<float>(inputWidth - 1) /
(outputWidth - 1) : 0.f;
for (int h2 = 0; h2 < outputHeight; ++h2) {
const float h1r = rheight * h2;
const int h1 = h1r;
const int h1p = (h1 < inputHeight - 1) ? 1 : 0;
const DType h1lambda = h1r - h1;
const DType h0lambda = (DType)1. - h1lambda;
for (int w2 = 0; w2 < outputWidth; ++w2) {
const float w1r = rwidth * w2;
const int w1 = w1r;
const int w1p = (w1 < inputWidth - 1) ? 1 : 0;
const DType w1lambda = w1r - w1;
const DType w0lambda = (DType)1. - w1lambda;
const DType* pos1 = &idata[h1 * inputWidth + w1];
DType* pos2 = &odata[h2 * outputWidth + w2];
for (int c = 0; c < channels; ++c) {
pos2[0] = h0lambda * (w0lambda * pos1[0]+ w1lambda * pos1[w1p])
+ h1lambda * (w0lambda * pos1[h1p * inputWidth]
+ w1lambda * pos1[h1p * inputWidth + w1p]);
pos1 += inputWidth * inputHeight;
pos2 += outputWidth * outputHeight;
}
}
}
}
template<typename xpu, typename DType, typename AccReal>
void SpatialUpSamplingBilinearUpdateGradInput(mshadow::Stream<cpu> *s,
const std::vector<TBlob> &input,
const std::vector<TBlob> &output) {
Tensor<xpu, 4, DType> gradOutput = input[0].get<xpu, 4, DType>(s);
Tensor<xpu, 4, DType> gradInput = output[0].get<xpu, 4, DType>(s);
int nbatch = gradInput.size(0);
int channels = gradInput.size(1);
int outputHeight = gradOutput.size(2);
int outputWidth = gradOutput.size(3);
int inputHeight = gradInput.size(2);
int inputWidth = gradInput.size(3);
DType *data1 = gradInput.dptr_;
DType *data2 = gradOutput.dptr_;
channels = nbatch * channels;
// special case: same-size matching grids
if (inputHeight == outputHeight && inputWidth == outputWidth) {
for (int h2 = 0; h2 < outputHeight; ++h2) {
const int h1 = h2;
for (int w2 = 0; w2 < outputWidth; ++w2) {
const int w1 = w2;
DType* pos1 = &data1[h1 * inputWidth + w1];
const DType* pos2 = &data2[h2 * outputWidth + w2];
for (int c = 0; c < channels; ++c) {
pos1[0] += pos2[0];
pos1 += inputWidth * inputHeight;
pos2 += outputWidth * outputHeight;
}
}
}
return;
}
const float rheight =(outputHeight > 1) ? static_cast<float>(inputHeight - 1)/
(outputHeight - 1) : 0.f;
const float rwidth = (outputWidth > 1) ? static_cast<float>(inputWidth - 1)/
(outputWidth - 1) : 0.f;
for (int h2 = 0; h2 < outputHeight; ++h2) {
const float h1r = rheight * h2;
const int h1 = h1r;
const int h1p = (h1 < inputHeight - 1) ? 1 : 0;
const DType h1lambda = h1r - h1;
const DType h0lambda = (DType)1. - h1lambda;
for (int w2 = 0; w2 < outputWidth; ++w2) {
const float w1r = rwidth * w2;
const int w1 = w1r;
const int w1p = (w1 < inputWidth - 1) ? 1 : 0;
const DType w1lambda = w1r - w1;
const DType w0lambda = (DType)1. - w1lambda;
DType* pos1 = &data1[h1 * inputWidth + w1];
const DType* pos2 = &data2[h2 * outputWidth + w2];
for (int c = 0; c < channels; ++c) {
pos1[0] += h0lambda * w0lambda * pos2[0];
pos1[w1p] += h0lambda * w1lambda * pos2[0];
pos1[h1p * inputWidth] += h1lambda * w0lambda * pos2[0];
pos1[h1p * inputWidth + w1p] += h1lambda * w1lambda * pos2[0];
pos1 += inputWidth * inputHeight;
pos2 += outputWidth * outputHeight;
}
}
}
}
DMLC_REGISTER_PARAMETER(BilinearSampleParam);
NNVM_REGISTER_OP(_contrib_BilinearResize2D)
.describe(R"code(
Perform 2D resizing (upsampling or downsampling) for 4D input using bilinear interpolation.
Expected input is a 4 dimensional NDArray (NCHW) and the output
with the shape of (N x C x height x width).
The key idea of bilinear interpolation is to perform linear interpolation
first in one direction, and then again in the other direction. See the wikipedia of
`Bilinear interpolation <https://en.wikipedia.org/wiki/Bilinear_interpolation>`_
for more details.
)code" ADD_FILELINE)
.set_attr_parser(ParamParser<BilinearSampleParam>)
.set_num_inputs(1)
.set_num_outputs(1)
.set_attr<mxnet::FInferShape>("FInferShape", BilinearSampleOpInferShape)
.set_attr<FCompute>("FCompute<cpu>", BilinearSampleOpForward<cpu>)
.set_attr<nnvm::FGradient>("FGradient",
ElemwiseGradUseNone{"_backward_contrib_BilinearResize2D"})
.add_argument("data", "NDArray-or-Symbol", "Input data")
.add_arguments(BilinearSampleParam::__FIELDS__());
NNVM_REGISTER_OP(_backward_contrib_BilinearResize2D)
.set_attr_parser(ParamParser<BilinearSampleParam>)
.set_num_inputs(1)
.set_num_outputs(1)
.set_attr<nnvm::TIsBackward>("TIsBackward", true)
.set_attr<FCompute>("FCompute<cpu>", BilinearSampleOpBackward<cpu>);
} // namespace op
} // namespace mxnet