blob: e14396e50c15ea32d22a3b4a5eb3b48b4f8a52ca [file] [log] [blame]
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import mxnet as mx
from mxnet.test_utils import *
from config import *
from data import get_uci_adult
from model import wide_deep_model
import argparse
import os
import time
parser = argparse.ArgumentParser(description="Run sparse wide and deep inference",
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--num-infer-batch', type=int, default=100,
help='number of batches to inference')
parser.add_argument('--load-epoch', type=int, default=0,
help='loading the params of the corresponding training epoch.')
parser.add_argument('--batch-size', type=int, default=100,
help='number of examples per batch')
parser.add_argument('--benchmark', action='store_true', default=False,
help='run the script for benchmark mode, not set for accuracy test.')
parser.add_argument('--verbose', action='store_true', default=False,
help='accurcy for each batch will be logged if set')
parser.add_argument('--gpu', action='store_true', default=False,
help='Inference on GPU with CUDA')
parser.add_argument('--model-prefix', type=str, default='checkpoint',
help='the model prefix')
if __name__ == '__main__':
import logging
head = '%(asctime)-15s %(message)s'
logging.basicConfig(level=logging.INFO, format=head)
# arg parser
args = parser.parse_args()
logging.info(args)
num_iters = args.num_infer_batch
batch_size = args.batch_size
benchmark = args.benchmark
verbose = args.verbose
model_prefix = args.model_prefix
load_epoch = args.load_epoch
ctx = mx.gpu(0) if args.gpu else mx.cpu()
# dataset
data_dir = os.path.join(os.getcwd(), 'data')
val_data = os.path.join(data_dir, ADULT['test'])
val_csr, val_dns, val_label = get_uci_adult(data_dir, ADULT['test'], ADULT['url'])
# load parameters and symbol
sym, arg_params, aux_params = mx.model.load_checkpoint(model_prefix, load_epoch)
# data iterator
eval_data = mx.io.NDArrayIter({'csr_data': val_csr, 'dns_data': val_dns},
{'softmax_label': val_label}, batch_size,
shuffle=True, last_batch_handle='discard')
# module
mod = mx.mod.Module(symbol=sym, context=ctx, data_names=['csr_data', 'dns_data'],
label_names=['softmax_label'])
mod.bind(data_shapes=eval_data.provide_data, label_shapes=eval_data.provide_label)
# get the sparse weight parameter
mod.set_params(arg_params=arg_params, aux_params=aux_params)
data_iter = iter(eval_data)
nbatch = 0
if benchmark:
logging.info('Inference benchmark started ...')
tic = time.time()
for i in range(num_iters):
try:
batch = data_iter.next()
except StopIteration:
data_iter.reset()
else:
mod.forward(batch, is_train=False)
for output in mod.get_outputs():
output.wait_to_read()
nbatch += 1
score = (nbatch*batch_size)/(time.time() - tic)
logging.info('batch size %d, process %s samples/s' % (batch_size, score))
else:
logging.info('Inference started ...')
# use accuracy as the metric
metric = mx.metric.create(['acc'])
accuracy_avg = 0.0
for batch in data_iter:
nbatch += 1
metric.reset()
mod.forward(batch, is_train=False)
mod.update_metric(metric, batch.label)
accuracy_avg += metric.get()[1][0]
if args.verbose:
logging.info('batch %d, accuracy = %s' % (nbatch, metric.get()))
logging.info('averged accuracy on eval set is %.5f' % (accuracy_avg/nbatch))