blob: 44bab2c416ba5513134230e1c013256458ca72c9 [file] [log] [blame]
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import argparse
import logging
import mxnet as mx
import numpy as np
from data import get_movielens_iter, get_movielens_data
from model import matrix_fact_net
import os
logging.basicConfig(level=logging.DEBUG)
parser = argparse.ArgumentParser(description="Run matrix factorization with sparse embedding",
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--num-epoch', type=int, default=3,
help='number of epochs to train')
parser.add_argument('--seed', type=int, default=1,
help='random seed')
parser.add_argument('--batch-size', type=int, default=128,
help='number of examples per batch')
parser.add_argument('--log-interval', type=int, default=100,
help='logging interval')
parser.add_argument('--factor-size', type=int, default=128,
help="the factor size of the embedding operation")
parser.add_argument('--gpus', type=str,
help="list of gpus to run, e.g. 0 or 0,2. empty means using cpu().")
parser.add_argument('--dense', action='store_true', help="whether to use dense embedding")
MOVIELENS = {
'dataset': 'ml-10m',
'train': './data/ml-10M100K/r1.train',
'val': './data/ml-10M100K/r1.test',
'max_user': 71569,
'max_movie': 65135,
}
def batch_row_ids(data_batch):
""" Generate row ids based on the current mini-batch """
item = data_batch.data[0]
user = data_batch.data[1]
return {'user_weight': user.astype(np.int64),
'item_weight': item.astype(np.int64)}
def all_row_ids(data_batch):
""" Generate row ids for all rows """
all_users = mx.nd.arange(0, MOVIELENS['max_user'], dtype='int64')
all_movies = mx.nd.arange(0, MOVIELENS['max_movie'], dtype='int64')
return {'user_weight': all_users, 'item_weight': all_movies}
if __name__ == '__main__':
head = '%(asctime)-15s %(message)s'
logging.basicConfig(level=logging.INFO, format=head)
# arg parser
args = parser.parse_args()
logging.info(args)
num_epoch = args.num_epoch
batch_size = args.batch_size
optimizer = 'sgd'
factor_size = args.factor_size
log_interval = args.log_interval
momentum = 0.9
ctx = [mx.gpu(int(i)) for i in args.gpus.split(',')] if args.gpus else [mx.cpu()]
learning_rate = 0.1
mx.random.seed(args.seed)
np.random.seed(args.seed)
# prepare dataset and iterators
max_user = MOVIELENS['max_user']
max_movies = MOVIELENS['max_movie']
data_dir = os.path.join(os.getcwd(), 'data')
get_movielens_data(data_dir, MOVIELENS['dataset'])
train_iter = get_movielens_iter(MOVIELENS['train'], batch_size)
val_iter = get_movielens_iter(MOVIELENS['val'], batch_size)
# construct the model
net = matrix_fact_net(factor_size, factor_size, max_user, max_movies, dense=args.dense)
# initialize the module
mod = mx.module.Module(net, context=ctx, data_names=['user', 'item'],
label_names=['score'])
mod.bind(data_shapes=train_iter.provide_data, label_shapes=train_iter.provide_label)
mod.init_params(initializer=mx.init.Xavier(factor_type="in", magnitude=2.34))
optim = mx.optimizer.create(optimizer, learning_rate=learning_rate,
rescale_grad=1.0/batch_size)
mod.init_optimizer(optimizer=optim, kvstore='device')
# use MSE as the metric
metric = mx.metric.create(['MSE'])
speedometer = mx.callback.Speedometer(batch_size, log_interval)
logging.info('Training started ...')
for epoch in range(num_epoch):
nbatch = 0
metric.reset()
for batch in train_iter:
nbatch += 1
mod.prepare(batch, sparse_row_id_fn=batch_row_ids)
mod.forward_backward(batch)
# update all parameters
mod.update()
# update training metric
mod.update_metric(metric, batch.label)
speedometer_param = mx.model.BatchEndParam(epoch=epoch, nbatch=nbatch,
eval_metric=metric, locals=locals())
speedometer(speedometer_param)
# prepare the module weight with all row ids for inference. Alternatively, one could call
# score = mod.score(val_iter, ['MSE'], sparse_row_id_fn=batch_row_ids)
# to fetch the weight per mini-batch
mod.prepare(None, sparse_row_id_fn=all_row_ids)
# evaluate metric on validation dataset
score = mod.score(val_iter, ['MSE'])
logging.info('epoch %d, eval MSE = %s ' % (epoch, score[0][1]))
# reset the iterator for next pass of data
train_iter.reset()
val_iter.reset()
logging.info('Training completed.')