blob: 84509a3daf3d7cc6b3b590b16e2cfd3302d7a758 [file] [log] [blame]
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# pylint:skip-file
import sys
sys.path.insert(0, "../../python")
import mxnet as mx
import numpy as np
from collections import namedtuple
import time
import math
LSTMState = namedtuple("LSTMState", ["c", "h"])
LSTMParam = namedtuple("LSTMParam", ["i2h_weight", "i2h_bias",
"h2h_weight", "h2h_bias"])
LSTMModel = namedtuple("LSTMModel", ["rnn_exec", "symbol",
"init_states", "last_states",
"seq_data", "seq_labels", "seq_outputs",
"param_blocks"])
def lstm(num_hidden, indata, prev_state, param, seqidx, layeridx, dropout=0.):
"""LSTM Cell symbol"""
if dropout > 0.:
indata = mx.sym.Dropout(data=indata, p=dropout)
i2h = mx.sym.FullyConnected(data=indata,
weight=param.i2h_weight,
bias=param.i2h_bias,
num_hidden=num_hidden * 4,
name="t%d_l%d_i2h" % (seqidx, layeridx))
h2h = mx.sym.FullyConnected(data=prev_state.h,
weight=param.h2h_weight,
bias=param.h2h_bias,
num_hidden=num_hidden * 4,
name="t%d_l%d_h2h" % (seqidx, layeridx))
gates = i2h + h2h
slice_gates = mx.sym.SliceChannel(gates, num_outputs=4,
name="t%d_l%d_slice" % (seqidx, layeridx))
in_gate = mx.sym.Activation(slice_gates[0], act_type="sigmoid")
in_transform = mx.sym.Activation(slice_gates[1], act_type="tanh")
forget_gate = mx.sym.Activation(slice_gates[2], act_type="sigmoid")
out_gate = mx.sym.Activation(slice_gates[3], act_type="sigmoid")
next_c = (forget_gate * prev_state.c) + (in_gate * in_transform)
next_h = out_gate * mx.sym.Activation(next_c, act_type="tanh")
return LSTMState(c=next_c, h=next_h)
# we define a new unrolling function here because the original
# one in lstm.py concats all the labels at the last layer together,
# making the mini-batch size of the label different from the data.
# I think the existing data-parallelization code need some modification
# to allow this situation to work properly
def lstm_unroll(num_lstm_layer, seq_len, input_size,
num_hidden, num_embed, num_label, dropout=0.):
embed_weight = mx.sym.Variable("embed_weight")
cls_weight = mx.sym.Variable("cls_weight")
cls_bias = mx.sym.Variable("cls_bias")
param_cells = []
last_states = []
for i in range(num_lstm_layer):
param_cells.append(LSTMParam(i2h_weight=mx.sym.Variable("l%d_i2h_weight" % i),
i2h_bias=mx.sym.Variable("l%d_i2h_bias" % i),
h2h_weight=mx.sym.Variable("l%d_h2h_weight" % i),
h2h_bias=mx.sym.Variable("l%d_h2h_bias" % i)))
state = LSTMState(c=mx.sym.Variable("l%d_init_c" % i),
h=mx.sym.Variable("l%d_init_h" % i))
last_states.append(state)
assert(len(last_states) == num_lstm_layer)
# embeding layer
data = mx.sym.Variable('data')
label = mx.sym.Variable('softmax_label')
embed = mx.sym.Embedding(data=data, input_dim=input_size,
weight=embed_weight, output_dim=num_embed, name='embed')
wordvec = mx.sym.SliceChannel(data=embed, num_outputs=seq_len, squeeze_axis=1)
hidden_all = []
for seqidx in range(seq_len):
hidden = wordvec[seqidx]
# stack LSTM
for i in range(num_lstm_layer):
if i == 0:
dp_ratio = 0.
else:
dp_ratio = dropout
next_state = lstm(num_hidden, indata=hidden,
prev_state=last_states[i],
param=param_cells[i],
seqidx=seqidx, layeridx=i, dropout=dp_ratio)
hidden = next_state.h
last_states[i] = next_state
# decoder
if dropout > 0.:
hidden = mx.sym.Dropout(data=hidden, p=dropout)
hidden_all.append(hidden)
hidden_concat = mx.sym.Concat(*hidden_all, dim=0)
pred = mx.sym.FullyConnected(data=hidden_concat, num_hidden=num_label,
weight=cls_weight, bias=cls_bias, name='pred')
################################################################################
# Make label the same shape as our produced data path
# I did not observe big speed difference between the following two ways
label = mx.sym.transpose(data=label)
label = mx.sym.Reshape(data=label, target_shape=(0,))
#label_slice = mx.sym.SliceChannel(data=label, num_outputs=seq_len)
#label = [label_slice[t] for t in range(seq_len)]
#label = mx.sym.Concat(*label, dim=0)
#label = mx.sym.Reshape(data=label, target_shape=(0,))
################################################################################
sm = mx.sym.SoftmaxOutput(data=pred, label=label, name='softmax')
return sm
def lstm_inference_symbol(num_lstm_layer, input_size,
num_hidden, num_embed, num_label, dropout=0.):
seqidx = 0
embed_weight=mx.sym.Variable("embed_weight")
cls_weight = mx.sym.Variable("cls_weight")
cls_bias = mx.sym.Variable("cls_bias")
param_cells = []
last_states = []
for i in range(num_lstm_layer):
param_cells.append(LSTMParam(i2h_weight = mx.sym.Variable("l%d_i2h_weight" % i),
i2h_bias = mx.sym.Variable("l%d_i2h_bias" % i),
h2h_weight = mx.sym.Variable("l%d_h2h_weight" % i),
h2h_bias = mx.sym.Variable("l%d_h2h_bias" % i)))
state = LSTMState(c=mx.sym.Variable("l%d_init_c" % i),
h=mx.sym.Variable("l%d_init_h" % i))
last_states.append(state)
assert(len(last_states) == num_lstm_layer)
data = mx.sym.Variable("data")
hidden = mx.sym.Embedding(data=data,
input_dim=input_size,
output_dim=num_embed,
weight=embed_weight,
name="embed")
# stack LSTM
for i in range(num_lstm_layer):
if i==0:
dp=0.
else:
dp = dropout
next_state = lstm(num_hidden, indata=hidden,
prev_state=last_states[i],
param=param_cells[i],
seqidx=seqidx, layeridx=i, dropout=dp)
hidden = next_state.h
last_states[i] = next_state
# decoder
if dropout > 0.:
hidden = mx.sym.Dropout(data=hidden, p=dropout)
fc = mx.sym.FullyConnected(data=hidden, num_hidden=num_label,
weight=cls_weight, bias=cls_bias, name='pred')
sm = mx.sym.SoftmaxOutput(data=fc, name='softmax')
output = [sm]
for state in last_states:
output.append(state.c)
output.append(state.h)
return mx.sym.Group(output)