| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, |
| # software distributed under the License is distributed on an |
| # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| # KIND, either express or implied. See the License for the |
| # specific language governing permissions and limitations |
| # under the License. |
| from __future__ import print_function |
| import mxnet as mx |
| import mxnet.ndarray as nd |
| import numpy as np |
| from mxnet import gluon |
| from mxnet.gluon.data.vision import transforms |
| from mxnet.test_utils import assert_almost_equal |
| from mxnet.test_utils import almost_equal |
| from common import setup_module, with_seed |
| |
| |
| @with_seed() |
| def test_to_tensor(): |
| data_in = np.random.uniform(0, 255, (300, 300, 3)).astype(dtype=np.uint8) |
| out_nd = transforms.ToTensor()(nd.array(data_in, dtype='uint8')) |
| assert_almost_equal(out_nd.asnumpy(), np.transpose( |
| data_in.astype(dtype=np.float32) / 255.0, (2, 0, 1))) |
| |
| |
| @with_seed() |
| def test_normalize(): |
| data_in = np.random.uniform(0, 255, (300, 300, 3)).astype(dtype=np.uint8) |
| data_in = transforms.ToTensor()(nd.array(data_in, dtype='uint8')) |
| out_nd = transforms.Normalize(mean=(0, 1, 2), std=(3, 2, 1))(data_in) |
| data_expected = data_in.asnumpy() |
| data_expected[:][:][0] = data_expected[:][:][0] / 3.0 |
| data_expected[:][:][1] = (data_expected[:][:][1] - 1.0) / 2.0 |
| data_expected[:][:][2] = data_expected[:][:][2] - 2.0 |
| assert_almost_equal(data_expected, out_nd.asnumpy()) |
| |
| |
| @with_seed() |
| def test_flip_left_right(): |
| data_in = np.random.uniform(0, 255, (300, 300, 3)).astype(dtype=np.uint8) |
| flip_in = data_in[:, ::-1, :] |
| data_trans = nd.image.flip_left_right(nd.array(data_in, dtype='uint8')) |
| assert_almost_equal(flip_in, data_trans.asnumpy()) |
| |
| |
| @with_seed() |
| def test_flip_top_bottom(): |
| data_in = np.random.uniform(0, 255, (300, 300, 3)).astype(dtype=np.uint8) |
| flip_in = data_in[::-1, :, :] |
| data_trans = nd.image.flip_top_bottom(nd.array(data_in, dtype='uint8')) |
| assert_almost_equal(flip_in, data_trans.asnumpy()) |
| |
| |
| @with_seed() |
| def test_transformer(): |
| from mxnet.gluon.data.vision import transforms |
| |
| transform = transforms.Compose([ |
| transforms.Resize(300), |
| transforms.CenterCrop(256), |
| transforms.RandomResizedCrop(224), |
| transforms.RandomFlipLeftRight(), |
| transforms.RandomColorJitter(0.1, 0.1, 0.1, 0.1), |
| transforms.RandomBrightness(0.1), |
| transforms.RandomContrast(0.1), |
| transforms.RandomSaturation(0.1), |
| transforms.RandomHue(0.1), |
| transforms.RandomLighting(0.1), |
| transforms.ToTensor(), |
| transforms.Normalize([0, 0, 0], [1, 1, 1])]) |
| |
| transform(mx.nd.ones((245, 480, 3), dtype='uint8')).wait_to_read() |
| |
| |
| |
| if __name__ == '__main__': |
| import nose |
| nose.runmodule() |