| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, |
| # software distributed under the License is distributed on an |
| # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| # KIND, either express or implied. See the License for the |
| # specific language governing permissions and limitations |
| # under the License. |
| |
| # pylint: skip-file |
| import sys |
| sys.path.insert(0, '../../python') |
| import mxnet as mx |
| from mxnet.test_utils import get_mnist_ubyte |
| import numpy as np |
| import os, pickle, gzip, argparse |
| import logging |
| |
| def get_model(use_gpu): |
| # symbol net |
| data = mx.symbol.Variable('data') |
| conv1= mx.symbol.Convolution(data = data, name='conv1', num_filter=32, kernel=(3,3), stride=(2,2)) |
| bn1 = mx.symbol.BatchNorm(data = conv1, name="bn1") |
| act1 = mx.symbol.Activation(data = bn1, name='relu1', act_type="relu") |
| mp1 = mx.symbol.Pooling(data = act1, name = 'mp1', kernel=(2,2), stride=(2,2), pool_type='max') |
| |
| conv2= mx.symbol.Convolution(data = mp1, name='conv2', num_filter=32, kernel=(3,3), stride=(2,2)) |
| bn2 = mx.symbol.BatchNorm(data = conv2, name="bn2") |
| act2 = mx.symbol.Activation(data = bn2, name='relu2', act_type="relu") |
| mp2 = mx.symbol.Pooling(data = act2, name = 'mp2', kernel=(2,2), stride=(2,2), pool_type='max') |
| |
| |
| fl = mx.symbol.Flatten(data = mp2, name="flatten") |
| fc2 = mx.symbol.FullyConnected(data = fl, name='fc2', num_hidden=10) |
| softmax = mx.symbol.SoftmaxOutput(data = fc2, name = 'sm') |
| |
| num_epoch = 1 |
| ctx=mx.gpu() if use_gpu else mx.cpu() |
| model = mx.model.FeedForward(softmax, ctx, |
| num_epoch=num_epoch, |
| learning_rate=0.1, wd=0.0001, |
| momentum=0.9) |
| return model |
| |
| def get_iters(): |
| # check data |
| get_mnist_ubyte() |
| |
| batch_size = 100 |
| train_dataiter = mx.io.MNISTIter( |
| image="data/train-images-idx3-ubyte", |
| label="data/train-labels-idx1-ubyte", |
| data_shape=(1, 28, 28), |
| label_name='sm_label', |
| batch_size=batch_size, shuffle=True, flat=False, silent=False, seed=10) |
| val_dataiter = mx.io.MNISTIter( |
| image="data/t10k-images-idx3-ubyte", |
| label="data/t10k-labels-idx1-ubyte", |
| data_shape=(1, 28, 28), |
| label_name='sm_label', |
| batch_size=batch_size, shuffle=True, flat=False, silent=False) |
| return train_dataiter, val_dataiter |
| |
| # run default with unit test framework |
| def test_mnist(): |
| iters = get_iters() |
| exec_mnist(get_model(False), iters[0], iters[1]) |
| |
| def exec_mnist(model, train_dataiter, val_dataiter): |
| # print logging by default |
| logging.basicConfig(level=logging.DEBUG) |
| console = logging.StreamHandler() |
| console.setLevel(logging.DEBUG) |
| logging.getLogger('').addHandler(console) |
| |
| model.fit(X=train_dataiter, |
| eval_data=val_dataiter) |
| logging.info('Finish fit...') |
| prob = model.predict(val_dataiter) |
| logging.info('Finish predict...') |
| val_dataiter.reset() |
| y = np.concatenate([batch.label[0].asnumpy() for batch in val_dataiter]).astype('int') |
| py = np.argmax(prob, axis=1) |
| acc1 = float(np.sum(py == y)) / len(y) |
| logging.info('final accuracy = %f', acc1) |
| assert(acc1 > 0.94) |
| |
| # run as a script |
| if __name__ == "__main__": |
| parser = argparse.ArgumentParser() |
| parser.add_argument('--gpu', action='store_true', help='use gpu to train') |
| args = parser.parse_args() |
| iters = get_iters() |
| exec_mnist(get_model(args.gpu), iters[0], iters[1]) |
| |