blob: b563adc1d76060db5821324a02716ca595af7f2d [file] [log] [blame]
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""This file defines various models used in the test"""
import mxnet as mx
def mlp2():
data = mx.symbol.Variable('data')
out = mx.symbol.FullyConnected(data=data, name='fc1', num_hidden=1000)
out = mx.symbol.Activation(data=out, act_type='relu')
out = mx.symbol.FullyConnected(data=out, name='fc2', num_hidden=10)
return out
def conv():
data = mx.symbol.Variable('data')
conv1= mx.symbol.Convolution(data = data, name='conv1', num_filter=32, kernel=(3,3), stride=(2,2))
bn1 = mx.symbol.BatchNorm(data = conv1, name="bn1")
act1 = mx.symbol.Activation(data = bn1, name='relu1', act_type="relu")
mp1 = mx.symbol.Pooling(data = act1, name = 'mp1', kernel=(2,2), stride=(2,2), pool_type='max')
conv2= mx.symbol.Convolution(data = mp1, name='conv2', num_filter=32, kernel=(3,3), stride=(2,2))
bn2 = mx.symbol.BatchNorm(data = conv2, name="bn2")
act2 = mx.symbol.Activation(data = bn2, name='relu2', act_type="relu")
mp2 = mx.symbol.Pooling(data = act2, name = 'mp2', kernel=(2,2), stride=(2,2), pool_type='max')
fl = mx.symbol.Flatten(data = mp2, name="flatten")
fc2 = mx.symbol.FullyConnected(data = fl, name='fc2', num_hidden=10)
softmax = mx.symbol.SoftmaxOutput(data = fc2, name = 'sm')
return softmax