| /* |
| * Licensed to the Apache Software Foundation (ASF) under one |
| * or more contributor license agreements. See the NOTICE file |
| * distributed with this work for additional information |
| * regarding copyright ownership. The ASF licenses this file |
| * to you under the Apache License, Version 2.0 (the |
| * "License"); you may not use this file except in compliance |
| * with the License. You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, |
| * software distributed under the License is distributed on an |
| * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| * KIND, either express or implied. See the License for the |
| * specific language governing permissions and limitations |
| * under the License. |
| */ |
| |
| /*! |
| * \file activation_perf.cc |
| * \brief Perf/profile run of ActivationOp |
| * \author Chris Olivier |
| */ |
| |
| #include <gtest/gtest.h> |
| #include <mxnet/tensor_blob.h> |
| #include "../include/test_op_runner.h" |
| #include "../include/test_legacy_op.h" |
| #include "../../src/operator/slice_channel-inl.h" |
| |
| using namespace mxnet; |
| |
| typedef std::vector<std::pair<std::string, std::string> > kwargs_t; |
| const kwargs_t basic_activation_args = { }; |
| |
| /*! |
| * \brief Generic bidirectional sanity test |
| */ |
| TEST(SLICE_CHANNEL_PERF, ExecuteBidirectional) { |
| TShape shape({1, 160, 200}); |
| kwargs_t kwargs = basic_activation_args; |
| kwargs.push_back({"num_outputs", "160"}); |
| test::op::LegacyOpRunner<mxnet::op::SliceChannelProp, float, float> runner; |
| runner.RunBidirectional(false, { shape }, kwargs, 1); |
| } |
| |
| /*! |
| * \brief ActivationOp timing test for CPU |
| */ |
| TEST(SLICE_CHANNEL_PERF, TimingCPU) { |
| kwargs_t kwargs = basic_activation_args; |
| // Which math function is arbitrary since it will have roughly constant timing among approaches |
| kwargs.push_back({"num_outputs", "160"}); |
| test::op::LegacyOpRunner<mxnet::op::SliceChannelProp, float, float> runner; |
| runner.RunBidirectional(false, |
| { TShape({1, 160, 200}) }, |
| kwargs, 1); // prime code and cache |
| std::vector <TShape> shapes; |
| if (test::performance_run) { |
| shapes = { |
| {1, 160, 200}, |
| {10, 160, 200}, |
| {100, 160, 200}, |
| {10, 160, 500}, |
| {100, 160, 500} |
| }; |
| } else { |
| shapes = { |
| {1, 160, 200}, |
| {1, 160, 200} |
| }; |
| } |
| for (const TShape &shape : shapes) { |
| runner.TimingTest("SliceChannel Operator CPU", false, false, kwargs, 2, 10, { shape }); |
| } |
| } |
| |
| #if MXNET_USE_CUDA == 1 |
| /*! |
| * \brief ActivationOp timing test for GPU |
| */ |
| TEST(SLICE_CHANNEL_PERF, TimingGPU) { |
| kwargs_t kwargs = basic_activation_args; |
| // Which math function is arbitrary since it will have roughly constant timing among approaches |
| kwargs.push_back({"num_outputs", "160"}); |
| test::OperatorRunner<mxnet::op::SliceChannelProp, |
| test::op::LegacyOperatorExecutor<float, float>> runner; |
| runner.RunBidirectional(true, |
| { TShape({1, 160, 200}) }, |
| kwargs, 1); // prime code and cache |
| std::vector <TShape> shapes = { |
| {1, 160, 200}, |
| {1, 160, 200}, |
| {1, 160, 200}, |
| {1, 160, 200}, |
| {1, 160, 200} |
| }; |
| for (const TShape &shape : shapes) { |
| runner.TimingTest("SliceChannel Operator GPU", true, false, kwargs, 2, 10, { shape }); |
| } |
| } |
| #endif // MXNET_USE_CUDA == 1 |
| |