| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, |
| # software distributed under the License is distributed on an |
| # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| # KIND, either express or implied. See the License for the |
| # specific language governing permissions and limitations |
| # under the License. |
| |
| import os |
| import argparse |
| import logging |
| logging.basicConfig(level=logging.DEBUG) |
| from common import find_mxnet, data, fit |
| from common.util import download_file |
| import mxnet as mx |
| |
| def download_cifar10(): |
| data_dir="data" |
| fnames = (os.path.join(data_dir, "cifar10_train.rec"), |
| os.path.join(data_dir, "cifar10_val.rec")) |
| download_file('http://data.mxnet.io/data/cifar10/cifar10_val.rec', fnames[1]) |
| download_file('http://data.mxnet.io/data/cifar10/cifar10_train.rec', fnames[0]) |
| return fnames |
| |
| if __name__ == '__main__': |
| # download data |
| (train_fname, val_fname) = download_cifar10() |
| |
| # parse args |
| parser = argparse.ArgumentParser(description="train cifar10", |
| formatter_class=argparse.ArgumentDefaultsHelpFormatter) |
| fit.add_fit_args(parser) |
| data.add_data_args(parser) |
| data.add_data_aug_args(parser) |
| data.set_data_aug_level(parser, 2) |
| parser.set_defaults( |
| # network |
| network = 'resnet', |
| num_layers = 110, |
| # data |
| data_train = train_fname, |
| data_val = val_fname, |
| num_classes = 10, |
| num_examples = 50000, |
| image_shape = '3,28,28', |
| pad_size = 4, |
| # train |
| batch_size = 128, |
| num_epochs = 300, |
| lr = .05, |
| lr_step_epochs = '200,250', |
| ) |
| args = parser.parse_args() |
| |
| # load network |
| from importlib import import_module |
| net = import_module('symbols.'+args.network) |
| sym = net.get_symbol(**vars(args)) |
| |
| # train |
| fit.fit(args, sym, data.get_rec_iter) |