blob: 03b3d72176481cfc1ced70066e4d6ab19dbdbfda [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*!
*/
#include <map>
#include <string>
#include <vector>
#include "mxnet-cpp/MxNetCpp.h"
using namespace mxnet::cpp;
Symbol ConvolutionNoBias(const std::string& symbol_name,
Symbol data,
Symbol weight,
Shape kernel,
int num_filter,
Shape stride = Shape(1, 1),
Shape dilate = Shape(1, 1),
Shape pad = Shape(0, 0),
int num_group = 1,
int64_t workspace = 512) {
return Operator("Convolution")
.SetParam("kernel", kernel)
.SetParam("num_filter", num_filter)
.SetParam("stride", stride)
.SetParam("dilate", dilate)
.SetParam("pad", pad)
.SetParam("num_group", num_group)
.SetParam("workspace", workspace)
.SetParam("no_bias", true)
.SetInput("data", data)
.SetInput("weight", weight)
.CreateSymbol(symbol_name);
}
Symbol getConv(const std::string & name, Symbol data,
int num_filter,
Shape kernel, Shape stride, Shape pad,
bool with_relu,
mx_float bn_momentum) {
Symbol conv_w(name + "_w");
Symbol conv = ConvolutionNoBias(name, data, conv_w,
kernel, num_filter, stride, Shape(1, 1),
pad, 1, 512);
Symbol gamma(name + "_gamma");
Symbol beta(name + "_beta");
Symbol mmean(name + "_mmean");
Symbol mvar(name + "_mvar");
Symbol bn = BatchNorm(name + "_bn", conv, gamma,
beta, mmean, mvar, 2e-5, bn_momentum, false);
if (with_relu) {
return Activation(name + "_relu", bn, "relu");
} else {
return bn;
}
}
Symbol makeBlock(const std::string & name, Symbol data, int num_filter,
bool dim_match, mx_float bn_momentum) {
Shape stride;
if (dim_match) {
stride = Shape(1, 1);
} else {
stride = Shape(2, 2);
}
Symbol conv1 = getConv(name + "_conv1", data, num_filter,
Shape(3, 3), stride, Shape(1, 1),
true, bn_momentum);
Symbol conv2 = getConv(name + "_conv2", conv1, num_filter,
Shape(3, 3), Shape(1, 1), Shape(1, 1),
false, bn_momentum);
Symbol shortcut;
if (dim_match) {
shortcut = data;
} else {
Symbol shortcut_w(name + "_proj_w");
shortcut = ConvolutionNoBias(name + "_proj", data, shortcut_w,
Shape(2, 2), num_filter,
Shape(2, 2), Shape(1, 1), Shape(0, 0),
1, 512);
}
Symbol fused = shortcut + conv2;
return Activation(name + "_relu", fused, "relu");
}
Symbol getBody(Symbol data, int num_level, int num_block, int num_filter, mx_float bn_momentum) {
for (int level = 0; level < num_level; level++) {
for (int block = 0; block < num_block; block++) {
data = makeBlock("level" + std::to_string(level + 1) + "_block" + std::to_string(block + 1),
data, num_filter * (std::pow(2, level)),
(level == 0 || block > 0), bn_momentum);
}
}
return data;
}
Symbol ResNetSymbol(int num_class, int num_level = 3, int num_block = 9,
int num_filter = 16, mx_float bn_momentum = 0.9,
mxnet::cpp::Shape pool_kernel = mxnet::cpp::Shape(8, 8)) {
// data and label
Symbol data = Symbol::Variable("data");
Symbol data_label = Symbol::Variable("data_label");
Symbol gamma("gamma");
Symbol beta("beta");
Symbol mmean("mmean");
Symbol mvar("mvar");
Symbol zscore = BatchNorm("zscore", data, gamma,
beta, mmean, mvar, 0.001, bn_momentum);
Symbol conv = getConv("conv0", zscore, num_filter,
Shape(3, 3), Shape(1, 1), Shape(1, 1),
true, bn_momentum);
Symbol body = getBody(conv, num_level, num_block, num_filter, bn_momentum);
Symbol pool = Pooling("pool", body, pool_kernel, PoolingPoolType::kAvg);
Symbol flat = Flatten("flatten", pool);
Symbol fc_w("fc_w"), fc_b("fc_b");
Symbol fc = FullyConnected("fc", flat, fc_w, fc_b, num_class);
return SoftmaxOutput("softmax", fc, data_label);
}
int main(int argc, char const *argv[]) {
int batch_size = 50;
int max_epoch = 100;
float learning_rate = 1e-4;
float weight_decay = 1e-4;
auto resnet = ResNetSymbol(10);
std::map<std::string, NDArray> args_map;
std::map<std::string, NDArray> aux_map;
args_map["data"] = NDArray(Shape(batch_size, 3, 256, 256), Context::gpu());
args_map["data_label"] = NDArray(Shape(batch_size), Context::gpu());
resnet.InferArgsMap(Context::gpu(), &args_map, args_map);
auto train_iter = MXDataIter("ImageRecordIter")
.SetParam("path_imglist", "./sf1_train.lst")
.SetParam("path_imgrec", "./sf1_train.rec")
.SetParam("data_shape", Shape(3, 256, 256))
.SetParam("batch_size", batch_size)
.SetParam("shuffle", 1)
.CreateDataIter();
auto val_iter = MXDataIter("ImageRecordIter")
.SetParam("path_imglist", "./sf1_val.lst")
.SetParam("path_imgrec", "./sf1_val.rec")
.SetParam("data_shape", Shape(3, 256, 256))
.SetParam("batch_size", batch_size)
.CreateDataIter();
Optimizer* opt = OptimizerRegistry::Find("ccsgd");
opt->SetParam("lr", learning_rate)
->SetParam("wd", weight_decay)
->SetParam("momentum", 0.9)
->SetParam("rescale_grad", 1.0 / batch_size)
->SetParam("clip_gradient", 10);
auto *exec = resnet.SimpleBind(Context::gpu(), args_map);
auto arg_names = resnet.ListArguments();
for (int iter = 0; iter < max_epoch; ++iter) {
LG << "Epoch: " << iter;
train_iter.Reset();
while (train_iter.Next()) {
auto data_batch = train_iter.GetDataBatch();
data_batch.data.CopyTo(&args_map["data"]);
data_batch.label.CopyTo(&args_map["data_label"]);
NDArray::WaitAll();
exec->Forward(true);
exec->Backward();
for (size_t i = 0; i < arg_names.size(); ++i) {
if (arg_names[i] == "data" || arg_names[i] == "data_label") continue;
opt->Update(i, exec->arg_arrays[i], exec->grad_arrays[i]);
}
NDArray::WaitAll();
}
Accuracy acu;
val_iter.Reset();
while (val_iter.Next()) {
auto data_batch = val_iter.GetDataBatch();
data_batch.data.CopyTo(&args_map["data"]);
data_batch.label.CopyTo(&args_map["data_label"]);
NDArray::WaitAll();
exec->Forward(false);
NDArray::WaitAll();
acu.Update(data_batch.label, exec->outputs[0]);
}
LG << "Accuracy: " << acu.Get();
}
delete exec;
MXNotifyShutdown();
return 0;
}