blob: ae47d925670f20588970dd4fa074c2dba793d0ac [file] [log] [blame]
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
''' Unit tests for Gluon Estimator '''
import sys
import unittest
import warnings
import mxnet as mx
from mxnet import gluon
from mxnet.gluon import nn
from mxnet.gluon.contrib.estimator import *
from mxnet.gluon.contrib.estimator.event_handler import *
from nose.tools import assert_raises
def _get_test_network():
net = nn.Sequential()
net.add(nn.Dense(4, activation='relu', flatten=False))
return net
def _get_test_data():
batch_size = 4
in_data = mx.nd.random.uniform(shape=(10, 3))
out_data = mx.nd.random.uniform(shape=(10, 4))
# Input dataloader
dataset = gluon.data.dataset.ArrayDataset(in_data, out_data)
dataloader = gluon.data.DataLoader(dataset, batch_size=batch_size)
dataiter = mx.io.NDArrayIter(data=in_data, label=out_data, batch_size=batch_size)
return dataloader, dataiter
def test_fit():
''' test estimator with different train data types '''
net = _get_test_network()
dataloader, dataiter = _get_test_data()
num_epochs = 1
ctx = mx.cpu()
loss = gluon.loss.L2Loss()
acc = mx.metric.Accuracy()
net.initialize(ctx=ctx)
trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': 0.001})
est = Estimator(net=net,
loss=loss,
metrics=acc,
trainer=trainer,
context=ctx)
est.fit(train_data=dataloader,
epochs=num_epochs)
with assert_raises(ValueError):
est.fit(train_data=dataiter,
epochs=num_epochs)
# Input NDArray
with assert_raises(ValueError):
est.fit(train_data=[mx.nd.ones(shape=(10, 3))],
epochs=num_epochs)
def test_validation():
''' test different validation data types'''
net = _get_test_network()
dataloader, dataiter = _get_test_data()
num_epochs = 1
ctx = mx.cpu()
loss = gluon.loss.L2Loss()
acc = mx.metric.Accuracy()
net.initialize(ctx=ctx)
trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': 0.001})
est = Estimator(net=net,
loss=loss,
metrics=acc,
trainer=trainer,
context=ctx)
# Input dataloader
est.fit(train_data=dataloader,
val_data=dataloader,
epochs=num_epochs)
# using validation handler
train_metrics, val_metrics = est.prepare_loss_and_metrics()
validation_handler = ValidationHandler(val_data=dataloader, eval_fn=est.evaluate,
val_metrics=val_metrics)
with assert_raises(ValueError):
est.fit(train_data=dataiter,
val_data=dataiter,
epochs=num_epochs)
# Input NDArray
with assert_raises(ValueError):
est.fit(train_data=[mx.nd.ones(shape=(10, 3))],
val_data=[mx.nd.ones(shape=(10, 3))],
epochs=num_epochs)
@unittest.skipIf(sys.version_info.major < 3, 'Test on python 3')
def test_initializer():
''' test with no initializer, inconsistent initializer '''
net = _get_test_network()
train_data, _ = _get_test_data()
num_epochs = 1
ctx = mx.cpu()
loss = gluon.loss.L2Loss()
acc = mx.metric.Accuracy()
# no initializer
est = Estimator(net=net,
loss=loss,
metrics=acc,
context=ctx)
est.fit(train_data=train_data,
epochs=num_epochs)
# different initializer for net and estimator
net = _get_test_network()
net.initialize(mx.init.Xavier(), ctx=ctx)
trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': 0.001})
# catch reinit warning
with warnings.catch_warnings(record=True) as w:
est = Estimator(net=net,
loss=loss,
metrics=acc,
initializer=mx.init.MSRAPrelu(),
trainer=trainer,
context=ctx)
assert 'Network already fully initialized' in str(w[-1].message)
# net partially initialized, fine tuning use case
net = gluon.model_zoo.vision.resnet18_v1(pretrained=True, ctx=ctx)
net.output = gluon.nn.Dense(10) #last layer not initialized
est = Estimator(net, loss=loss, metrics=acc, context=ctx)
dataset = gluon.data.ArrayDataset(mx.nd.zeros((10, 3, 224, 224)), mx.nd.zeros((10, 10)))
train_data = gluon.data.DataLoader(dataset=dataset, batch_size=5)
est.fit(train_data=train_data,
epochs=num_epochs)
@unittest.skipIf(sys.version_info.major < 3, 'Test on python 3')
def test_trainer():
''' test with no trainer and invalid trainer '''
net = _get_test_network()
train_data, _ = _get_test_data()
num_epochs = 1
ctx = mx.cpu()
loss = gluon.loss.L2Loss()
acc = mx.metric.Accuracy()
net.initialize(ctx=ctx)
# input no trainer
with warnings.catch_warnings(record=True) as w:
est = Estimator(net=net,
loss=loss,
metrics=acc,
context=ctx)
assert 'No trainer specified' in str(w[-1].message)
est.fit(train_data=train_data,
epochs=num_epochs)
# input invalid trainer
trainer = 'sgd'
with assert_raises(ValueError):
est = Estimator(net=net,
loss=loss,
metrics=acc,
trainer=trainer,
context=ctx)
def test_metric():
''' test with no metric, list of metrics, invalid metric '''
net = _get_test_network()
train_data, _ = _get_test_data()
num_epochs = 1
ctx = mx.cpu()
loss = gluon.loss.L2Loss()
net.initialize(ctx=ctx)
trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': 0.001})
# input no metric
est = Estimator(net=net,
loss=loss,
trainer=trainer,
context=ctx)
est.fit(train_data=train_data,
epochs=num_epochs)
# input list of metrics
metrics = [mx.metric.Accuracy(), mx.metric.Accuracy()]
est = Estimator(net=net,
loss=loss,
metrics=metrics,
trainer=trainer,
context=ctx)
est.fit(train_data=train_data,
epochs=num_epochs)
# input invalid metric
with assert_raises(ValueError):
est = Estimator(net=net,
loss=loss,
metrics='acc',
trainer=trainer,
context=ctx)
# test default metric
loss = gluon.loss.SoftmaxCrossEntropyLoss()
est = Estimator(net=net,
loss=loss,
trainer=trainer,
context=ctx)
est.prepare_loss_and_metrics()
assert isinstance(est.train_metrics[0], mx.metric.Accuracy)
def test_loss():
''' test with invalid loss '''
net = _get_test_network()
ctx = mx.cpu()
acc = mx.metric.Accuracy()
net.initialize(ctx=ctx)
trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': 0.001})
# input invalid loss
with assert_raises(ValueError):
est = Estimator(net=net,
loss='mse',
metrics=acc,
trainer=trainer,
context=ctx)
def test_context():
''' test with no context, list of context, invalid context '''
net = _get_test_network()
loss = gluon.loss.L2Loss()
metrics = mx.metric.Accuracy()
# input no context
est = Estimator(net=net,
loss=loss,
metrics=metrics)
# input list of context
gpus = mx.context.num_gpus()
ctx = [mx.gpu(i) for i in range(gpus)] if gpus > 0 else [mx.cpu()]
net = _get_test_network()
est = Estimator(net=net,
loss=loss,
metrics=metrics,
context=ctx)
# input invalid context
with assert_raises(ValueError):
est = Estimator(net=net,
loss=loss,
metrics=metrics,
context='cpu')
with assert_raises(AssertionError):
est = Estimator(net=net,
loss=loss,
metrics=metrics,
context=[mx.gpu(0), mx.gpu(100)])
def test_categorize_handlers():
class CustomHandler1(TrainBegin):
def train_begin(self):
print("custom train begin")
class CustomHandler2(EpochBegin, BatchBegin, TrainEnd):
def epoch_begin(self):
print("custom epoch begin")
def batch_begin(self):
print("custom batch begin")
def train_end(self):
print("custom train end")
class CustomHandler3(EpochBegin, BatchBegin, BatchEnd, TrainEnd):
def epoch_begin(self):
print("custom epoch begin")
def batch_begin(self):
print("custom batch begin")
def batch_end(self):
print("custom batch end")
def train_end(self):
print("custom train end")
net = nn.Sequential()
net.add(nn.Dense(10))
loss = gluon.loss.SoftmaxCrossEntropyLoss()
est = Estimator(net, loss=loss)
event_handlers = [CustomHandler1(), CustomHandler2(), CustomHandler3()]
train_begin, epoch_begin, batch_begin, \
batch_end, epoch_end, train_end = est._categorize_handlers(event_handlers)
assert len(train_begin) == 1
assert len(epoch_begin) == 2
assert len(batch_begin) == 2
assert len(batch_end) == 1
assert len(train_end) == 2
@unittest.skipIf(sys.version_info.major < 3, 'Test on python 3')
def test_default_handlers():
net = _get_test_network()
train_data, _ = _get_test_data()
num_epochs = 1
ctx = mx.cpu()
net.initialize(ctx=ctx)
trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': 0.001})
train_acc = mx.metric.RMSE()
loss = gluon.loss.L2Loss()
est = Estimator(net=net,
loss=loss,
metrics=train_acc,
trainer=trainer,
context=ctx)
# no handler(all default handlers), no warning
with warnings.catch_warnings(record=True) as w:
est.fit(train_data=train_data, epochs=num_epochs)
# handler with prepared loss and metrics
# use mix of default and user defined handlers
train_metrics, val_metrics = est.prepare_loss_and_metrics()
logging = LoggingHandler(train_metrics=train_metrics, val_metrics=val_metrics)
with warnings.catch_warnings(record=True) as w:
est.fit(train_data=train_data, epochs=num_epochs, event_handlers=[logging])
assert 'You are training with the' in str(w[-1].message)
# provide metric handler by default
assert 'MetricHandler' in str(w[-1].message)
# handler with all user defined metrics
# use mix of default and user defined handlers
metric = MetricHandler(train_metrics=[train_acc])
logging = LoggingHandler(train_metrics=[train_acc])
est.fit(train_data=train_data, epochs=num_epochs, event_handlers=[metric, logging])
# handler with mixed metrics, some handler use metrics prepared by estimator
# some handler use metrics user prepared
logging = LoggingHandler(train_metrics=train_metrics, val_metrics=[mx.metric.RMSE("val acc")])
with assert_raises(ValueError):
est.fit(train_data=train_data, epochs=num_epochs, event_handlers=[logging])
# test handler order
train_metrics, val_metrics = est.prepare_loss_and_metrics()
early_stopping = EarlyStoppingHandler(monitor=val_metrics[0])
handlers = est._prepare_default_handlers(val_data=None, event_handlers=[early_stopping])
assert len(handlers) == 4
assert isinstance(handlers[0], MetricHandler)
assert isinstance(handlers[3], LoggingHandler)