blob: 29deda92e01b09b499f226fc5b5cffbebf2e0e2e [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*!
* \file activation_perf.cc
* \brief Perf/profile run of ActivationOp
* \author Chris Olivier
*/
#include <gtest/gtest.h>
#include <mxnet/tensor_blob.h>
#include "../include/test_op_runner.h"
#include "../include/test_core_op.h"
#include "../../src/operator/nn/activation-inl.h"
using namespace mxnet;
typedef std::vector<std::pair<std::string, std::string> > kwargs_t;
const kwargs_t basic_activation_args = { };
/*!
* \brief Generic bidirectional sanity test
*/
TEST(ACTIVATION_PERF, ExecuteBidirectional) {
using namespace std;
mxnet::TShape shape({5, 5});
vector<string> activations = {
"relu",
"sigmoid",
"tanh",
"softrelu",
"softsign"
};
for (const string& activation : activations) {
kwargs_t activation_args = {{"act_type", activation}};
test::op::CoreOperatorRunner<float> runner;
runner.RunBidirectional(false, { shape }, test::op::CoreOpExecutor<float>::ArgsWithOpName(
activation_args, "Activation", "_backward_Activation"), 1);
}
for (const string& activation : activations) {
kwargs_t activation_args = {{"act_type", activation}};
test::op::CoreOperatorRunner<float> runner;
runner.RunBidirectional(true, { shape }, test::op::CoreOpExecutor<float>::ArgsWithOpName(
activation_args, "Activation", "_backward_Activation"), 1);
}
}
/*!
* \brief ActivationOp timing test for CPU
*/
TEST(ACTIVATION_PERF, TimingCPU) {
kwargs_t kwargs = basic_activation_args;
// Which math function is arbitrary since it will have roughly constant timing among approaches
kwargs.push_back({"act_type", "tanh"});
kwargs = test::op::CoreOpExecutor<float>::ArgsWithOpName(kwargs, "Activation",
"_backward_Activation");
mxnet::TShape shape({10, 10, 10, 10});
test::op::CoreOperatorRunner<float> runner;
runner.RunBidirectional(false, { shape }, kwargs, 1);
std::vector <mxnet::TShape> shapes;
if (test::performance_run) {
shapes = {
{1, 1, 28, 28},
{1, 3, 28, 28},
{50, 1, 18, 32},
{50, 3, 18, 32},
{20, 3, 128, 128}
};
} else {
shapes = {
{1, 1, 28, 28},
{50, 3, 18, 32},
};
}
for (const mxnet::TShape &shape : shapes) {
runner.TimingTest("Activation Operator CPU", false, false, kwargs, 2, 10, { shape });
}
}
#if MXNET_USE_CUDA == 1
/*!
* \brief ActivationOp timing test for GPU
*/
TEST(ACTIVATION_PERF, TimingGPU) {
kwargs_t kwargs = basic_activation_args;
// Which math function is arbitrary since it will have roughly constant timing among approaches
kwargs.push_back({"act_type", "tanh"});
kwargs = test::op::CoreOpExecutor<float>::ArgsWithOpName(kwargs, "Activation",
"_backward_Activation");
mxnet::TShape shape({10, 10, 10, 10});
test::op::CoreOperatorRunner<float> runner;
runner.RunBidirectional(true, { shape }, kwargs, 1);
std::vector <mxnet::TShape> shapes = {
{1, 1, 28, 28},
{1, 3, 28, 28},
{50, 1, 18, 32},
{50, 3, 18, 32},
{20, 3, 128, 128}
};
for (const mxnet::TShape &shape : shapes) {
runner.TimingTest("Activation Operator GPU", true, false, kwargs, 2, 10, { shape });
}
}
#endif // MXNET_USE_CUDA == 1