blob: 18b8625d8d0038729771b5f317daa74e70b7ba3b [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*!
* Copyright (c) 2016 by Contributors
* \file ordering_op.cc
* \brief CPU Implementation of the ordering operations
*/
// this will be invoked by gcc and compile CPU version
#include "./ordering_op-inl.h"
#include "./elemwise_unary_op.h"
namespace mxnet {
namespace op {
DMLC_REGISTER_PARAMETER(TopKParam);
DMLC_REGISTER_PARAMETER(SortParam);
DMLC_REGISTER_PARAMETER(ArgSortParam);
NNVM_REGISTER_OP(topk)
.add_alias("_npx_topk")
.describe(R"code(Returns the top *k* elements in an input array along the given axis.
The returned elements will be sorted.
Examples::
x = [[ 0.3, 0.2, 0.4],
[ 0.1, 0.3, 0.2]]
// returns an index of the largest element on last axis
topk(x) = [[ 2.],
[ 1.]]
// returns the value of top-2 largest elements on last axis
topk(x, ret_typ='value', k=2) = [[ 0.4, 0.3],
[ 0.3, 0.2]]
// returns the value of top-2 smallest elements on last axis
topk(x, ret_typ='value', k=2, is_ascend=1) = [[ 0.2 , 0.3],
[ 0.1 , 0.2]]
// returns the value of top-2 largest elements on axis 0
topk(x, axis=0, ret_typ='value', k=2) = [[ 0.3, 0.3, 0.4],
[ 0.1, 0.2, 0.2]]
// flattens and then returns list of both values and indices
topk(x, ret_typ='both', k=2) = [[[ 0.4, 0.3], [ 0.3, 0.2]] , [[ 2., 0.], [ 1., 2.]]]
)code" ADD_FILELINE)
.set_num_inputs(1)
.set_num_outputs(TopKNumOutputs)
.set_attr_parser(ParamParser<TopKParam>)
.set_attr<mxnet::FInferShape>("FInferShape", TopKShape)
.set_attr<nnvm::FInferType>("FInferType", TopKType)
.set_attr<nnvm::FNumVisibleOutputs>("FNumVisibleOutputs", TopKNumVisibleOutputs)
.set_attr<FCompute>("FCompute<cpu>", TopK<cpu>)
.set_attr<nnvm::FGradient>("FGradient",
[](const nnvm::NodePtr& n, const std::vector<nnvm::NodeEntry>& ograds) {
const TopKParam& param = nnvm::get<TopKParam>(n->attrs.parsed);
if (param.ret_typ == topk_enum::kReturnValue || param.ret_typ == topk_enum::kReturnBoth) {
std::vector<nnvm::NodeEntry> inputs;
uint32_t n_out = n->num_outputs();
for (uint32_t i = 0; i < n_out; ++i) {
inputs.emplace_back(n, i, 0);
}
return MakeNonlossGradNode("_backward_topk", n, {ograds[0]}, inputs, n->attrs.dict);
} else {
return MakeZeroGradNodes(n, ograds);
}
})
.set_attr<FResourceRequest>("FResourceRequest",
[](const NodeAttrs& attrs) {
return std::vector<ResourceRequest>{ResourceRequest::kTempSpace};
})
.set_attr<THasDeterministicOutput>("THasDeterministicOutput", true)
.add_argument("data", "NDArray-or-Symbol", "The input array")
.add_arguments(TopKParam::__FIELDS__());
NNVM_REGISTER_OP(_backward_topk)
.set_num_inputs(3)
.set_num_outputs(1)
.set_attr_parser(ParamParser<TopKParam>)
.set_attr<nnvm::TIsBackward>("TIsBackward", true)
.set_attr<FCompute>("FCompute<cpu>", TopKBackward_<cpu>)
.set_attr<FResourceRequest>("FResourceRequest",
[](const NodeAttrs& attrs) {
return std::vector<ResourceRequest>{ResourceRequest::kTempSpace};
});
NNVM_REGISTER_OP(sort)
.describe(R"code(Returns a sorted copy of an input array along the given axis.
Examples::
x = [[ 1, 4],
[ 3, 1]]
// sorts along the last axis
sort(x) = [[ 1., 4.],
[ 1., 3.]]
// flattens and then sorts
sort(x, axis=None) = [ 1., 1., 3., 4.]
// sorts along the first axis
sort(x, axis=0) = [[ 1., 1.],
[ 3., 4.]]
// in a descend order
sort(x, is_ascend=0) = [[ 4., 1.],
[ 3., 1.]]
)code" ADD_FILELINE)
.set_num_inputs(1)
.set_num_outputs(2)
.set_attr_parser(ParamParser<SortParam>)
.set_attr<mxnet::FInferShape>("FInferShape", SortShape)
.set_attr<nnvm::FInferType>("FInferType", SortType)
.set_attr<nnvm::FNumVisibleOutputs>("FNumVisibleOutputs", [](const NodeAttrs& attrs) { return 1; })
.set_attr<FCompute>("FCompute<cpu>", Sort<cpu>)
.set_attr<nnvm::FGradient>("FGradient",
[](const nnvm::NodePtr& n, const std::vector<nnvm::NodeEntry>& ograds) {
const SortParam& param = nnvm::get<SortParam>(n->attrs.parsed);
std::vector<nnvm::NodeEntry> inputs;
uint32_t n_out = n->num_outputs();
for (uint32_t i = 0; i < n_out; ++i) {
inputs.emplace_back(n, i, 0);
}
return MakeNonlossGradNode("_backward_topk", n, {ograds[0]}, inputs,
{{"axis", n->attrs.dict["axis"]},
{"k", "0"},
{"ret_typ", "value"},
{"is_ascend", std::to_string(param.is_ascend)}});
})
.set_attr<FResourceRequest>("FResourceRequest",
[](const NodeAttrs& attrs) {
return std::vector<ResourceRequest>{ResourceRequest::kTempSpace};
})
.set_attr<THasDeterministicOutput>("THasDeterministicOutput", true)
.add_argument("data", "NDArray-or-Symbol", "The input array")
.add_arguments(SortParam::__FIELDS__());
NNVM_REGISTER_OP(argsort)
.describe(R"code(Returns the indices that would sort an input array along the given axis.
This function performs sorting along the given axis and returns an array of indices having same shape
as an input array that index data in sorted order.
Examples::
x = [[ 0.3, 0.2, 0.4],
[ 0.1, 0.3, 0.2]]
// sort along axis -1
argsort(x) = [[ 1., 0., 2.],
[ 0., 2., 1.]]
// sort along axis 0
argsort(x, axis=0) = [[ 1., 0., 1.]
[ 0., 1., 0.]]
// flatten and then sort
argsort(x, axis=None) = [ 3., 1., 5., 0., 4., 2.]
)code" ADD_FILELINE)
.set_num_inputs(1)
.set_num_outputs(1)
.set_attr_parser(ParamParser<ArgSortParam>)
.set_attr<mxnet::FInferShape>("FInferShape", ArgSortShape)
.set_attr<nnvm::FInferType>("FInferType", ArgSortType)
.set_attr<FCompute>("FCompute<cpu>", ArgSort<cpu>)
.set_attr<nnvm::FGradient>("FGradient", MakeZeroGradNodes)
.set_attr<FResourceRequest>("FResourceRequest",
[](const NodeAttrs& attrs) {
return std::vector<ResourceRequest>{ResourceRequest::kTempSpace};
})
.set_attr<THasDeterministicOutput>("THasDeterministicOutput", true)
.add_argument("data", "NDArray-or-Symbol", "The input array")
.add_arguments(ArgSortParam::__FIELDS__());
} // namespace op
} // namespace mxnet