| /* |
| * Licensed to the Apache Software Foundation (ASF) under one |
| * or more contributor license agreements. See the NOTICE file |
| * distributed with this work for additional information |
| * regarding copyright ownership. The ASF licenses this file |
| * to you under the Apache License, Version 2.0 (the |
| * "License"); you may not use this file except in compliance |
| * with the License. You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, |
| * software distributed under the License is distributed on an |
| * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| * KIND, either express or implied. See the License for the |
| * specific language governing permissions and limitations |
| * under the License. |
| */ |
| |
| #ifndef MXNET_OPERATOR_SUBGRAPH_OP_COMMON_H_ |
| #define MXNET_OPERATOR_SUBGRAPH_OP_COMMON_H_ |
| |
| #include <mxnet/io.h> |
| #include <mxnet/base.h> |
| #include <mxnet/op_attr_types.h> |
| #include <vector> |
| #include <utility> |
| #include <string> |
| #include "../imperative/cached_op.h" |
| #include "../imperative/imperative_utils.h" |
| |
| namespace mxnet { |
| namespace op { |
| |
| /* |
| * Infer the data types of inputs and outputs of an operator that contains a |
| * subgraph. |
| */ |
| bool InferSubgraphDataType(const nnvm::Symbol &subgraph, std::vector<int> *in_type, |
| std::vector<int> *out_type); |
| |
| /* |
| * Infer the shape of inputs and outputs of an operator that contains a |
| * subgraph. |
| */ |
| bool InferSubgraphShape(const nnvm::Symbol &subgraph, |
| mxnet::ShapeVector *in_shape, |
| mxnet::ShapeVector *out_shape); |
| |
| /* |
| * Infer the storage types of inputs and outputs of an operator that contains a |
| * subgraph. |
| */ |
| bool InferSubgraphStorage(const nnvm::Symbol &subgraph, |
| const int dev_mask, |
| DispatchMode* dispatch_mode, |
| std::vector<int> *in_attrs, |
| std::vector<int> *out_attrs); |
| |
| bool as_bool_scalar(const NDArray &a); |
| |
| bool is_shape_udf(const mxnet::TShape &x); |
| |
| bool is_stype_udf(const int &x); |
| |
| bool is_type_udf(const int &x); |
| |
| template <typename T> |
| void extract_by_loc(const std::vector<T> &array, |
| const mxnet::Tuple<dim_t> input_locs, |
| std::vector<T> *out) { |
| out->clear(); |
| out->reserve(input_locs.ndim()); |
| for (dim_t i : input_locs) { |
| out->push_back(array[i]); |
| } |
| } |
| |
| template <typename T> |
| bool fill_value(T *x, T *y, bool x_empty, bool y_empty) { |
| if (*x == *y || (x_empty && y_empty)) { |
| return true; |
| } |
| if (!x_empty && !y_empty) { |
| return false; |
| } |
| if (x_empty) { |
| *x = *y; |
| } |
| if (y_empty) { |
| *y = *x; |
| } |
| return true; |
| } |
| |
| template <typename T> |
| bool sync_in_in(const mxnet::Tuple<dim_t> &input_locs, |
| std::vector<T> *in, |
| std::vector<T> *subg_in, |
| std::function<bool(const T &)> is_empty) { |
| for (int i = 0; i < input_locs.ndim(); ++i) { |
| T &x = in->at(input_locs[i]); |
| T &y = subg_in->at(i); |
| fill_value(&x, &y, is_empty(x), is_empty(y)); |
| } |
| return true; |
| } |
| |
| template <typename T> |
| bool sync_out_out(std::vector<T> *out_1, |
| std::vector<T> *out_2, |
| std::function<bool(const T &)> is_empty) { |
| CHECK_EQ(out_1->size(), out_2->size()); |
| for (size_t i = 0; i < out_1->size(); ++i) { |
| T &x = out_1->at(i); |
| T &y = out_2->at(i); |
| fill_value(&x, &y, is_empty(x), is_empty(y)); |
| } |
| return true; |
| } |
| |
| /* |
| * This contains the states for running a loop and provides methods |
| * of running the subgraph computation for an iteration. |
| */ |
| class LoopState { |
| // These are output arrays from all iterations. |
| // They also contain the Op state for each CachedOp. |
| std::vector<std::vector<NDArray> > all_outputs; |
| std::vector<std::vector<NDArray> > all_inputs; |
| // For inference, there should be only one cached op because we |
| // want to share the memory in iterations. |
| // For training, each iteration has a cached op because each iteration |
| // needs to maintain a set of memory buffers for all computation states, |
| // which will be used in the backward. |
| std::vector<OpStatePtr> all_states; |
| CachedOpPtr iter_op; |
| Symbol subgraph_sym; |
| nnvm::Graph subgraph; |
| |
| public: |
| explicit LoopState(const Symbol &g); |
| |
| void Forward(int iter_no, |
| const std::vector<NDArray> &inputs, |
| const std::vector<OpReqType>& req, |
| const std::vector<NDArray> &outputs, |
| bool is_recording); |
| void Backward(int iter_no, |
| const std::vector<NDArray> &ograds, |
| const std::vector<OpReqType> &req, |
| const std::vector<NDArray> &igrads); |
| void Cleanup() { |
| all_outputs.clear(); |
| all_inputs.clear(); |
| all_states.clear(); |
| } |
| static CachedOpPtr MakeSharedOp(const Symbol &sym) { |
| // We turn on static_alloc for two reasons. |
| // It avoids the overhead of unnecessary memory allocation. |
| // only static_alloc supports nested call of CachedOp. |
| std::vector<std::pair<std::string, std::string> > kwargs = { |
| {"inline_limit", "0"}, |
| {"static_alloc", "1"}, |
| {"is_dynamic", "1"} |
| }; |
| return std::make_shared<CachedOp>(sym, kwargs); |
| } |
| }; |
| |
| } // namespace op |
| } // namespace mxnet |
| |
| #endif // MXNET_OPERATOR_SUBGRAPH_OP_COMMON_H_ |