blob: db8676c028e4f6349870f96b305240008c623f3e [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*!
* Copyright (c) 2015 by Contributors
* \file softmax_output-inl.h
* \brief
* \author Bing Xu
*/
#ifndef MXNET_OPERATOR_SOFTMAX_OUTPUT_INL_H_
#define MXNET_OPERATOR_SOFTMAX_OUTPUT_INL_H_
#include <dmlc/logging.h>
#include <dmlc/parameter.h>
#include <mxnet/operator.h>
#include <cstring>
#include <map>
#include <string>
#include <vector>
#include <utility>
#include "./operator_common.h"
namespace mxnet {
namespace op {
namespace softmaxout_enum {
enum SoftmaxOutputOpInputs {kData, kLabel};
enum SoftmaxOutputOpOutputs {kOut};
enum SoftmaxOutputNormType {kNull, kBatch, kValid};
enum SoftmaxOutputOpResource {kTempSpace};
} // namespace softmaxout_enum
struct SoftmaxOutputParam : public dmlc::Parameter<SoftmaxOutputParam> {
float grad_scale;
float ignore_label;
bool multi_output;
bool use_ignore;
bool preserve_shape;
int normalization;
bool out_grad;
float smooth_alpha;
DMLC_DECLARE_PARAMETER(SoftmaxOutputParam) {
DMLC_DECLARE_FIELD(grad_scale).set_default(1.0f)
.describe("Scales the gradient by a float factor.");
DMLC_DECLARE_FIELD(ignore_label).set_default(-1.0f)
.describe("The instances whose `labels` == `ignore_label` will be ignored "
"during backward, if `use_ignore` is set to ``true``).");
DMLC_DECLARE_FIELD(multi_output).set_default(false)
.describe("If set to ``true``, the softmax function will be computed along "
"axis ``1``. This is applied when the shape "
"of input array differs from the shape of label array.");
DMLC_DECLARE_FIELD(use_ignore).set_default(false)
.describe("If set to ``true``, the `ignore_label` value will not contribute "
"to the backward gradient.");
DMLC_DECLARE_FIELD(preserve_shape).set_default(false)
.describe("If set to ``true``, the softmax function will be computed along "
"the last axis (``-1``).");
DMLC_DECLARE_FIELD(normalization)
.add_enum("null", softmaxout_enum::kNull)
.add_enum("batch", softmaxout_enum::kBatch)
.add_enum("valid", softmaxout_enum::kValid)
.set_default(softmaxout_enum::kNull)
.describe("Normalizes the gradient.");
DMLC_DECLARE_FIELD(out_grad)
.set_default(false)
.describe("Multiplies gradient with output gradient element-wise.");
DMLC_DECLARE_FIELD(smooth_alpha)
.set_default(0.0f)
.set_range(0.0f, 1.0f)
.describe("Constant for computing a label smoothed version of cross-entropy"
"for the backwards pass. This constant gets subtracted from the"
"one-hot encoding of the gold label and distributed uniformly to"
"all other labels.");
};
bool operator==(const SoftmaxOutputParam& other) const {
return this->grad_scale == other.grad_scale &&
this->ignore_label == other.ignore_label &&
this->multi_output == other.multi_output &&
this->use_ignore == other.use_ignore &&
this->preserve_shape == other.preserve_shape &&
this->normalization == other.normalization &&
this->out_grad == other.out_grad &&
this->smooth_alpha == other.smooth_alpha;
}
};
template<typename xpu, typename DType>
class SoftmaxOutputOp : public Operator {
public:
explicit SoftmaxOutputOp(SoftmaxOutputParam param) : param_(param) {}
virtual void Forward(const OpContext &ctx,
const std::vector<TBlob> &in_data,
const std::vector<OpReqType> &req,
const std::vector<TBlob> &out_data,
const std::vector<TBlob> &aux_args) {
using namespace mshadow;
using namespace mshadow::expr;
CHECK_EQ(in_data.size(), 2U) << "SoftmaxOutput Input: [data, label]";
CHECK_EQ(out_data.size(), 1U) << "SoftmaxOutput Output: [output]";
Stream<xpu> *s = ctx.get_stream<xpu>();
if (param_.multi_output) {
index_t n = in_data[softmaxout_enum::kData].size(0);
index_t k = in_data[softmaxout_enum::kData].size(1);
Shape<3> s3 = Shape3(n, k, static_cast<index_t>(in_data[softmaxout_enum::kData].Size()/n/k));
Tensor<xpu, 3, DType> data =
in_data[softmaxout_enum::kData].get_with_shape<xpu, 3, DType>(s3, s);
Tensor<xpu, 3, DType> out =
out_data[softmaxout_enum::kOut].get_with_shape<xpu, 3, DType>(s3, s);
Softmax(out, data);
} else {
if (param_.preserve_shape) {
Tensor<xpu, 2, DType> data = in_data[softmaxout_enum::kData].FlatTo2D<xpu, DType>(s);
Tensor<xpu, 2, DType> out = out_data[softmaxout_enum::kOut].FlatTo2D<xpu, DType>(s);
Softmax(out, data);
} else {
index_t n = in_data[softmaxout_enum::kData].size(0);
index_t k = in_data[softmaxout_enum::kData].Size()/n;
Shape<2> s2 = Shape2(n, k);
Tensor<xpu, 2, DType> data =
in_data[softmaxout_enum::kData].get_with_shape<xpu, 2, DType>(s2, s);
Tensor<xpu, 2, DType> out =
out_data[softmaxout_enum::kOut].get_with_shape<xpu, 2, DType>(s2, s);
Softmax(out, data);
}
}
}
virtual void Backward(const OpContext &ctx,
const std::vector<TBlob> &out_grad,
const std::vector<TBlob> &in_data,
const std::vector<TBlob> &out_data,
const std::vector<OpReqType> &req,
const std::vector<TBlob> &in_grad,
const std::vector<TBlob> &aux_args) {
using namespace mshadow;
using namespace mshadow::expr;
CHECK_EQ(in_data.size(), 2U);
CHECK_EQ(out_grad.size(), 1U);
CHECK_GE(in_grad.size(), 1U);
CHECK_GE(req.size(), 1U);
Stream<xpu> *s = ctx.get_stream<xpu>();
if (out_data[softmaxout_enum::kOut].shape_ ==
in_data[softmaxout_enum::kLabel].shape_) {
// use probability as label
Tensor<xpu, 2, DType> label = in_data[softmaxout_enum::kLabel].FlatTo2D<xpu, DType>(s);
Tensor<xpu, 2, DType> out = out_data[softmaxout_enum::kOut].FlatTo2D<xpu, DType>(s);
Tensor<xpu, 2, DType> grad = in_grad[softmaxout_enum::kData].FlatTo2D<xpu, DType>(s);
if (param_.out_grad) {
Tensor<xpu, 2, DType> ograd = out_grad[softmaxout_enum::kOut].FlatTo2D<xpu, DType>(s);
grad = scalar<DType>(param_.grad_scale) * (out - label) * ograd;
} else {
grad = (out - label) * scalar<DType>(param_.grad_scale);
}
} else if (param_.multi_output) {
index_t n = out_data[softmaxout_enum::kOut].size(0);
index_t k = out_data[softmaxout_enum::kOut].size(1);
Shape<3> s3 = Shape3(n, k, static_cast<index_t>(out_data[softmaxout_enum::kOut].Size()/n/k));
Shape<2> s2 = Shape2(s3[0], s3[2]);
Tensor<xpu, 2, DType> label =
in_data[softmaxout_enum::kLabel].get_with_shape<xpu, 2, DType>(s2, s);
Tensor<xpu, 3, DType> out =
out_data[softmaxout_enum::kOut].get_with_shape<xpu, 3, DType>(s3, s);
Tensor<xpu, 3, DType> grad =
in_grad[softmaxout_enum::kData].get_with_shape<xpu, 3, DType>(s3, s);
index_t valid_cnt = label.shape_.Size();
if (param_.use_ignore) {
SoftmaxGrad(grad, out, label, static_cast<DType>(param_.ignore_label));
} else {
SoftmaxGrad(grad, out, label);
}
if (param_.normalization == softmaxout_enum::kBatch) {
valid_cnt = label.size(0);
} else if (param_.normalization == softmaxout_enum::kValid) {
int i_label = static_cast<int>(param_.ignore_label);
Tensor<cpu, 2, DType> workspace =
ctx.requested[softmaxout_enum::kTempSpace].get_host_space_typed<2, DType>(
label.shape_);
Copy(workspace, label, label.stream_);
for (index_t i = 0; i < workspace.size(0); ++i) {
for (index_t j = 0; j < workspace.size(1); ++j) {
if (static_cast<int>(workspace[i][j]) == i_label) {
valid_cnt--;
}
}
}
valid_cnt = valid_cnt == 0 ? 1 : valid_cnt;
} else {
valid_cnt = 1;
}
grad *= DType(param_.grad_scale /
(param_.normalization == softmaxout_enum::kValid ? 1 : s3[2]) /
valid_cnt);
if (param_.out_grad) {
Tensor<xpu, 3, DType> ograd =
out_grad[softmaxout_enum::kOut].get_with_shape<xpu, 3, DType>(s3, s);
grad *= ograd;
}
} else {
Shape<1> label_shape = Shape1(in_data[softmaxout_enum::kLabel].Size());
Shape<2> data_shape;
if (param_.preserve_shape) {
data_shape = out_data[softmaxout_enum::kOut].shape_.FlatTo2D();
// Tensor<xpu, 1, DType> label = in_data[softmaxout_enum::kLabel].FlatTo1D<xpu, DType>(s);
// Tensor<xpu, 2, DType> out = out_data[softmaxout_enum::kOut].FlatTo2D<xpu, DType>(s);
// Tensor<xpu, 2, DType> grad = in_grad[softmaxout_enum::kData].FlatTo2D<xpu, DType>(s);
} else {
index_t n = out_data[softmaxout_enum::kOut].size(0);
data_shape = Shape2(n, out_data[softmaxout_enum::kOut].Size()/n);
}
Tensor<xpu, 1, DType> label = in_data[softmaxout_enum::kLabel].get_with_shape<xpu, 1, DType>(
label_shape, s);
Tensor<xpu, 2, DType> out =
out_data[softmaxout_enum::kOut].get_with_shape<xpu, 2, DType>(data_shape, s);
Tensor<xpu, 2, DType> grad =
in_grad[softmaxout_enum::kData].get_with_shape<xpu, 2, DType>(data_shape, s);
index_t valid_cnt = label.shape_.Size();
if (param_.use_ignore) {
if (param_.smooth_alpha == 0.0f) {
SoftmaxGrad(grad, out, label, static_cast<DType>(param_.ignore_label));
} else {
SmoothSoftmaxGrad(grad, out, label, static_cast<DType>(param_.ignore_label),
param_.smooth_alpha);
}
} else {
if (param_.smooth_alpha == 0.0f) {
SoftmaxGrad(grad, out, label);
} else {
SmoothSoftmaxGrad(grad, out, label, param_.smooth_alpha);
}
}
if (param_.normalization == softmaxout_enum::kBatch) {
valid_cnt = label.size(0);
} else if (param_.normalization == softmaxout_enum::kValid) {
int i_label = static_cast<int>(param_.ignore_label);
Tensor<cpu, 1, DType> workspace =
ctx.requested[softmaxout_enum::kTempSpace].get_host_space_typed<1, DType>(
label.shape_);
Copy(workspace, label, label.stream_);
for (index_t i = 0; i < label.size(0); ++i) {
if (static_cast<int>(workspace[i]) == i_label) {
valid_cnt--;
}
}
valid_cnt = valid_cnt == 0 ? 1 : valid_cnt;
} else {
valid_cnt = 1;
}
grad *= DType(param_.grad_scale / valid_cnt);
if (param_.out_grad) {
Tensor<xpu, 2, DType> ograd =
out_grad[softmaxout_enum::kOut].get_with_shape<xpu, 2, DType>(data_shape, s);
grad *= ograd;
}
}
}
private:
SoftmaxOutputParam param_;
}; // class SoftmaxOutputOp
template<typename xpu>
void SoftmaxOutputCompute(const nnvm::NodeAttrs& attrs,
const OpContext& ctx, const std::vector<TBlob>& inputs,
const std::vector<OpReqType>& req,
const std::vector<TBlob>& outputs) {
const SoftmaxOutputParam &param = nnvm::get<SoftmaxOutputParam>(attrs.parsed);
const std::vector<TBlob> no_use_but_adapt_origin_api;
CHECK_EQ(inputs.size(), 2U);
MSHADOW_REAL_TYPE_SWITCH(inputs[softmaxout_enum::kData].type_flag_, DType, {
SoftmaxOutputOp<xpu, DType> op(param);
op.Forward(ctx, inputs, req, outputs, no_use_but_adapt_origin_api);
});
}
template<typename xpu>
void SoftmaxOutputGradCompute(const nnvm::NodeAttrs& attrs,
const OpContext& ctx,
const std::vector<TBlob>& inputs,
const std::vector<OpReqType>& req,
const std::vector<TBlob>& outputs) {
const SoftmaxOutputParam& param = nnvm::get<SoftmaxOutputParam>(attrs.parsed);
const std::vector<TBlob> no_use_but_adapt_origin_api;
CHECK_EQ(inputs.size(), 2U);
std::vector<TBlob> out_grad{inputs[0]};
std::vector<TBlob> out_data{inputs[0]};
std::vector<TBlob> in_data(inputs.begin(), inputs.end());
int dtype = inputs[0].type_flag_;
const std::vector<TBlob> &in_grad = outputs;
MSHADOW_REAL_TYPE_SWITCH(dtype, DType, {
SoftmaxOutputOp<xpu, DType> op(param);
op.Backward(ctx, out_grad, in_data, out_data, req, in_grad, no_use_but_adapt_origin_api);
});
}
#if DMLC_USE_CXX11
class SoftmaxOutputProp : public OperatorProperty {
public:
std::vector<std::string> ListArguments() const override {
return {"data", "label"};
}
void Init(const std::vector<std::pair<std::string, std::string> >& kwargs) override {
param_.Init(kwargs);
}
std::map<std::string, std::string> GetParams() const override {
return param_.__DICT__();
}
bool InferShape(mxnet::ShapeVector *in_shape,
mxnet::ShapeVector *out_shape,
mxnet::ShapeVector *aux_shape) const override {
using namespace mshadow;
CHECK_EQ(in_shape->size(), 2U) << "Input:[data, label]";
const mxnet::TShape &dshape = in_shape->at(0);
if (!shape_is_known(dshape)) return false;
// label.shape == data.shape: use probability as label
if (dshape != (*in_shape)[softmaxout_enum::kLabel]) {
if (param_.multi_output) {
mxnet::TShape lshape1 = Shape2(dshape[0], dshape.Size()/dshape[0]/dshape[1]);
mxnet::TShape lshape2(dshape.ndim() - 1, -1);
lshape2[0] = dshape[0];
for (int i = 2; i < dshape.ndim(); ++i)
lshape2[i-1] = dshape[i];
mxnet::TShape lshape3 = dshape;
lshape3[1] = 1;
if (!mxnet::ndim_is_known(in_shape->at(softmaxout_enum::kLabel))) {
in_shape->at(softmaxout_enum::kLabel) = lshape1;
} else if (in_shape->at(softmaxout_enum::kLabel) == lshape1) {
} else if (in_shape->at(softmaxout_enum::kLabel) == lshape2) {
} else if (in_shape->at(softmaxout_enum::kLabel) == lshape3) {
} else {
std::ostringstream os;
os << "Expecting " << lshape1 << " or " << lshape2
<< ". But got " << in_shape->at(softmaxout_enum::kLabel);
throw InferShapeError(os.str(), softmaxout_enum::kLabel);
}
} else {
mxnet::TShape label_shape(dshape.ndim() - 1, -1);
for (int i = 0; i + 1 < dshape.ndim(); ++i)
label_shape[i] = dshape[i];
SHAPE_ASSIGN_CHECK(*in_shape, softmaxout_enum::kLabel, label_shape);
}
}
out_shape->clear();
out_shape->push_back(dshape);
return true;
}
bool InferType(std::vector<int> *in_type,
std::vector<int> *out_type,
std::vector<int> *aux_type) const override {
CHECK_GE(in_type->size(), 1U);
int dtype = (*in_type)[0];
CHECK_NE(dtype, -1) << "First input must have specified type";
for (size_t i = 0; i < in_type->size(); ++i) {
if ((*in_type)[i] == -1) {
(*in_type)[i] = dtype;
} else {
UNIFORM_TYPE_CHECK((*in_type)[i], dtype, ListArguments()[i]);
}
}
out_type->clear();
out_type->push_back(dtype);
return true;
}
OperatorProperty* Copy() const override {
auto ptr = new SoftmaxOutputProp();
ptr->param_ = param_;
return ptr;
}
std::string TypeString() const override {
return "SoftmaxOutput";
}
std::vector<int> DeclareBackwardDependency(
const std::vector<int> &out_grad,
const std::vector<int> &in_data,
const std::vector<int> &out_data) const override {
if (param_.out_grad) {
return {in_data[softmaxout_enum::kLabel], out_data[softmaxout_enum::kOut],
out_grad[softmaxout_enum::kOut]};
} else {
return {in_data[softmaxout_enum::kLabel], out_data[softmaxout_enum::kOut]};
}
}
std::vector<std::pair<int, void*> > BackwardInplaceOption(
const std::vector<int> &out_grad,
const std::vector<int> &in_data,
const std::vector<int> &out_data,
const std::vector<void*> &in_grad) const override {
return {{out_data[softmaxout_enum::kOut], in_grad[softmaxout_enum::kData]}};
}
std::vector<std::pair<int, void*> > ForwardInplaceOption(
const std::vector<int> &in_data,
const std::vector<void*> &out_data) const override {
return {{in_data[softmaxout_enum::kData], out_data[softmaxout_enum::kOut]}};
}
Operator* CreateOperator(Context ctx) const override {
LOG(FATAL) << "Not Implemented.";
return NULL;
}
Operator* CreateOperatorEx(Context ctx, mxnet::ShapeVector *in_shape,
std::vector<int> *in_type) const override;
protected:
SoftmaxOutputParam param_;
}; // class SoftmaxOutputProp
class DeprecatedSoftmaxProp : public SoftmaxOutputProp {
public:
void Init(const std::vector<std::pair<std::string, std::string> >& kwargs) override {
LOG(INFO) << "Softmax symbol is renamed to SoftmaxOutput. "
<< "This API will be deprecated in Dec, 2015";
SoftmaxOutputProp::param_.Init(kwargs);
}
std::string TypeString() const override {
return "Softmax";
}
};
#endif // DMLC_USE_CXX11
} // namespace op
} // namespace mxnet
namespace std {
template<>
struct hash<mxnet::op::SoftmaxOutputParam> {
size_t operator()(const mxnet::op::SoftmaxOutputParam& val) {
size_t ret = 0;
ret = dmlc::HashCombine(ret, val.grad_scale);
ret = dmlc::HashCombine(ret, val.ignore_label);
ret = dmlc::HashCombine(ret, val.multi_output);
ret = dmlc::HashCombine(ret, val.use_ignore);
ret = dmlc::HashCombine(ret, val.preserve_shape);
ret = dmlc::HashCombine(ret, val.normalization);
ret = dmlc::HashCombine(ret, val.out_grad);
ret = dmlc::HashCombine(ret, val.smooth_alpha);
return ret;
}
};
} // namespace std
#endif // MXNET_OPERATOR_SOFTMAX_OUTPUT_INL_H_