| /* |
| * Licensed to the Apache Software Foundation (ASF) under one |
| * or more contributor license agreements. See the NOTICE file |
| * distributed with this work for additional information |
| * regarding copyright ownership. The ASF licenses this file |
| * to you under the Apache License, Version 2.0 (the |
| * "License"); you may not use this file except in compliance |
| * with the License. You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, |
| * software distributed under the License is distributed on an |
| * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| * KIND, either express or implied. See the License for the |
| * specific language governing permissions and limitations |
| * under the License. |
| */ |
| |
| /* |
| * Copyright (c) 2016 by Contributors |
| * \file sequence_reverse-inl.h |
| * \brief |
| * \author Sebastian Bodenstien |
| * \author Marek Kolodziej |
| */ |
| |
| #ifndef MXNET_OPERATOR_SEQUENCE_REVERSE_INL_H_ |
| #define MXNET_OPERATOR_SEQUENCE_REVERSE_INL_H_ |
| |
| #include <dmlc/logging.h> |
| #include <dmlc/parameter.h> |
| #include <mxnet/operator.h> |
| #include <algorithm> |
| #include <map> |
| #include <string> |
| #include <utility> |
| #include <vector> |
| #include "./mshadow_op.h" |
| #include "./mxnet_op.h" |
| #include "./operator_common.h" |
| #include "./sequence_op_common.h" |
| |
| namespace mxnet { |
| namespace op { |
| |
| namespace seq_reverse { |
| enum SequenceReverseOpInputs { kData, kSequenceLength }; |
| enum SequenceReverseOpOutputs { kOut }; |
| } |
| |
| struct SequenceReverseParam : public dmlc::Parameter<SequenceReverseParam> { |
| bool use_sequence_length; |
| int axis; |
| DMLC_DECLARE_PARAMETER(SequenceReverseParam) { |
| DMLC_DECLARE_FIELD(use_sequence_length) |
| .set_default(false) |
| .describe( |
| "If set to true, this layer takes in an extra input parameter " |
| "`sequence_length` " |
| "to specify variable length sequence"); |
| DMLC_DECLARE_FIELD(axis).set_default(0).describe( |
| "The sequence axis. Only 0 is currently supported."); |
| } |
| }; |
| |
| template <OpReqType req> |
| struct ReverseKernel { |
| template <typename DType, typename IType> |
| MSHADOW_XINLINE static void Map(const index_t i, DType *const out_data, |
| const DType *const in_data, |
| const index_t max_seq_len, |
| const index_t batch_size, |
| const index_t other_dim, const index_t numel, |
| const IType *const indices) { |
| const index_t batch = i / (max_seq_len * other_dim); |
| const index_t id = (i / other_dim) % max_seq_len; |
| const index_t j = i % other_dim; |
| const index_t num_seq = |
| indices ? static_cast<index_t>(indices[batch]) : max_seq_len; |
| const index_t padded_periods = max_seq_len - num_seq; |
| // padded part |
| if (padded_periods > 0 && id < padded_periods) { |
| const index_t padded_in_offset = |
| (id + num_seq) * batch_size * other_dim + batch * other_dim; |
| |
| KERNEL_ASSIGN(out_data[padded_in_offset + j], req, |
| in_data[padded_in_offset + j]); |
| } |
| // unpadded part |
| if (id < num_seq) { |
| const index_t in_offset = id * batch_size * other_dim + batch * other_dim; |
| const index_t out_offset = |
| numel - (id + 1 + padded_periods) * batch_size * other_dim + |
| batch * other_dim; |
| |
| KERNEL_ASSIGN(out_data[out_offset + j], req, in_data[in_offset + j]); |
| } |
| } |
| }; |
| |
| template <typename xpu, typename DType, typename IType> |
| class SequenceReverseOp : public Operator { |
| public: |
| explicit SequenceReverseOp(SequenceReverseParam p) { this->param_ = p; } |
| void sequence_reverse(const mshadow::Tensor<xpu, 3, DType> &data, |
| const mshadow::Tensor<xpu, 3, DType> &out, |
| const OpReqType req, const IType *const indices, |
| mshadow::Stream<xpu> *const s) { |
| using namespace mshadow; |
| using namespace mshadow::expr; |
| |
| const index_t max_seq_len = data.size(0); |
| const index_t batch_size = data.size(1); |
| const index_t other_dim = data.size(2); |
| const index_t tensor_numel = data.shape_.Size(); |
| |
| MXNET_ASSIGN_REQ_SWITCH(req, req_type, { |
| mxnet_op::Kernel<ReverseKernel<req_type>, xpu>::Launch( |
| s, max_seq_len * batch_size * other_dim, out.dptr_, data.dptr_, |
| max_seq_len, batch_size, other_dim, tensor_numel, indices); |
| }); |
| } |
| |
| virtual void Forward(const OpContext &ctx, const std::vector<TBlob> &in_data, |
| const std::vector<OpReqType> &req, |
| const std::vector<TBlob> &out_data, |
| const std::vector<TBlob> &aux_args) { |
| using namespace mshadow; |
| using namespace mshadow::expr; |
| CHECK_EQ(in_data.size(), param_.use_sequence_length ? 2U : 1U); |
| CHECK_EQ(out_data.size(), 1U); |
| Stream<xpu> *const s = ctx.get_stream<xpu>(); |
| |
| // Get any size input + output into required form |
| auto max_seq_len = in_data[seq_reverse::kData].size(0); |
| auto n = in_data[seq_reverse::kData].size(1); |
| auto total_size = in_data[seq_reverse::kData].Size(); |
| auto rest_dim = static_cast<int>(total_size / n / max_seq_len); |
| |
| Shape<3> s3 = Shape3(max_seq_len, n, rest_dim); |
| Tensor<xpu, 3, DType> data = |
| in_data[seq_reverse::kData].get_with_shape<xpu, 3, DType>(s3, s); |
| Tensor<xpu, 3, DType> out = |
| out_data[seq_reverse::kOut].get_with_shape<xpu, 3, DType>(s3, s); |
| |
| const IType *const indices = |
| param_.use_sequence_length |
| ? in_data[seq_reverse::kSequenceLength].dptr<IType>() |
| : nullptr; |
| |
| sequence_reverse(data, out, req[seq_reverse::kOut], indices, s); |
| } |
| |
| virtual void Backward(const OpContext &ctx, |
| const std::vector<TBlob> &out_grad, |
| const std::vector<TBlob> &in_data, |
| const std::vector<TBlob> &out_data, |
| const std::vector<OpReqType> &req, |
| const std::vector<TBlob> &in_grad, |
| const std::vector<TBlob> &aux_args) { |
| using namespace mshadow; |
| using namespace mshadow::expr; |
| CHECK_EQ(out_grad.size(), 1U); |
| CHECK_EQ(in_data.size(), param_.use_sequence_length ? 2U : 1U); |
| Stream<xpu> *s = ctx.get_stream<xpu>(); |
| |
| // Get any size input + output into required form |
| auto max_seq_len = in_grad[seq_reverse::kData].size(0); |
| auto n = in_grad[seq_reverse::kData].size(1); |
| auto total_size = in_grad[seq_reverse::kData].Size(); |
| auto rest_dim = static_cast<int>(total_size / n / max_seq_len); |
| |
| Shape<3> s3 = Shape3(max_seq_len, n, rest_dim); |
| |
| Tensor<xpu, 3, DType> data_grad = |
| in_grad[seq_reverse::kData].get_with_shape<xpu, 3, DType>(s3, s); |
| Tensor<xpu, 3, DType> output_grad = |
| out_grad[seq_reverse::kOut].get_with_shape<xpu, 3, DType>(s3, s); |
| |
| const IType *const indices = |
| param_.use_sequence_length |
| ? in_data[seq_reverse::kSequenceLength].dptr<IType>() |
| : nullptr; |
| |
| sequence_reverse(output_grad, data_grad, req[seq_reverse::kData], indices, |
| s); |
| } |
| |
| private: |
| SequenceReverseParam param_; |
| }; // class SequenceReverseOp |
| |
| template <typename xpu> |
| Operator *CreateOp(SequenceReverseParam param, int dtype, int itype); |
| |
| #if DMLC_USE_CXX11 |
| class SequenceReverseProp : public OperatorProperty { |
| public: |
| int NumVisibleOutputs() const override { return 1; } |
| |
| int NumOutputs() const override { return 1; } |
| |
| std::vector<std::string> ListArguments() const override { |
| if (param_.use_sequence_length) |
| return {"data", "sequence_length"}; |
| else |
| return {"data"}; |
| } |
| |
| std::vector<std::string> ListOutputs() const override { return {"output"}; } |
| |
| void Init(const std::vector<std::pair<std::string, std::string> > &kwargs) |
| override { |
| param_.Init(kwargs); |
| } |
| |
| std::map<std::string, std::string> GetParams() const override { |
| return param_.__DICT__(); |
| } |
| |
| bool InferShape(mxnet::ShapeVector *in_shape, mxnet::ShapeVector *out_shape, |
| mxnet::ShapeVector *aux_shape) const override { |
| using namespace mshadow; |
| CHECK_EQ(in_shape->size(), param_.use_sequence_length ? 2U : 1U) |
| << "Input:[data, sequence_length]"; |
| CHECK_EQ(param_.axis, 0) << "Current implementation expects axis to be 0."; |
| |
| const mxnet::TShape &dshape = (*in_shape)[seq_reverse::kData]; |
| CHECK_GT(dshape.ndim(), 1U) |
| << "The data array must be of rank 2 or greater."; |
| // seq length vector is same as batch size |
| if (param_.use_sequence_length) |
| SHAPE_ASSIGN_CHECK(*in_shape, seq_reverse::kSequenceLength, |
| Shape1(dshape[1])); |
| |
| const mxnet::TShape &oshape = dshape; |
| out_shape->clear(); |
| out_shape->push_back(oshape); |
| return true; |
| } |
| |
| bool InferType(std::vector<int> *in_type, std::vector<int> *out_type, |
| std::vector<int> *aux_type) const override { |
| CHECK_GE(in_type->size(), param_.use_sequence_length ? 2U : 1U); |
| int dtype = (*in_type)[0]; |
| CHECK_NE(dtype, -1) << "First input must have specified type"; |
| for (size_t i = 0; i < in_type->size(); ++i) { |
| if ((*in_type)[i] == -1) { |
| (*in_type)[i] = dtype; |
| } |
| } |
| out_type->clear(); |
| out_type->push_back(dtype); |
| return true; |
| } |
| |
| OperatorProperty *Copy() const override { |
| auto ptr = new SequenceReverseProp(); |
| ptr->param_ = param_; |
| return ptr; |
| } |
| |
| std::string TypeString() const override { return "SequenceReverse"; } |
| |
| std::vector<int> DeclareBackwardDependency( |
| const std::vector<int> &out_grad, const std::vector<int> &in_data, |
| const std::vector<int> &out_data) const override { |
| if (param_.use_sequence_length) |
| return {out_grad[seq_reverse::kOut], |
| in_data[seq_reverse::kSequenceLength]}; |
| else |
| return {out_grad[seq_reverse::kOut]}; |
| } |
| |
| std::vector<ResourceRequest> BackwardResource( |
| const mxnet::ShapeVector &in_shape) const override { |
| return {ResourceRequest::kTempSpace}; |
| } |
| |
| Operator *CreateOperator(Context ctx) const override { |
| LOG(FATAL) << "Not Implemented."; |
| return NULL; |
| } |
| |
| Operator *CreateOperatorEx(Context ctx, mxnet::ShapeVector *in_shape, |
| std::vector<int> *in_type) const override; |
| |
| private: |
| SequenceReverseParam param_; |
| }; // class SequenceReverseProp |
| #endif // DMLC_USE_CXX11 |
| } // namespace op |
| } // namespace mxnet |
| #endif // MXNET_OPERATOR_SEQUENCE_REVERSE_INL_H_ |