blob: e857c6ab9af49175e8cb8618d126c1028b7e1c71 [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*
* Copyright (c) 2016 by Contributors
* \file sequence_reverse-inl.h
* \brief
* \author Sebastian Bodenstien
* \author Marek Kolodziej
*/
#ifndef MXNET_OPERATOR_SEQUENCE_REVERSE_INL_H_
#define MXNET_OPERATOR_SEQUENCE_REVERSE_INL_H_
#include <dmlc/logging.h>
#include <dmlc/parameter.h>
#include <mxnet/operator.h>
#include <algorithm>
#include <map>
#include <string>
#include <utility>
#include <vector>
#include "./mshadow_op.h"
#include "./mxnet_op.h"
#include "./operator_common.h"
#include "./sequence_op_common.h"
namespace mxnet {
namespace op {
namespace seq_reverse {
enum SequenceReverseOpInputs { kData, kSequenceLength };
enum SequenceReverseOpOutputs { kOut };
}
struct SequenceReverseParam : public dmlc::Parameter<SequenceReverseParam> {
bool use_sequence_length;
int axis;
DMLC_DECLARE_PARAMETER(SequenceReverseParam) {
DMLC_DECLARE_FIELD(use_sequence_length)
.set_default(false)
.describe(
"If set to true, this layer takes in an extra input parameter "
"`sequence_length` "
"to specify variable length sequence");
DMLC_DECLARE_FIELD(axis).set_default(0).describe(
"The sequence axis. Only 0 is currently supported.");
}
};
template <OpReqType req>
struct ReverseKernel {
template <typename DType, typename IType>
MSHADOW_XINLINE static void Map(const index_t i, DType *const out_data,
const DType *const in_data,
const index_t max_seq_len,
const index_t batch_size,
const index_t other_dim, const index_t numel,
const IType *const indices) {
const index_t batch = i / (max_seq_len * other_dim);
const index_t id = (i / other_dim) % max_seq_len;
const index_t j = i % other_dim;
const index_t num_seq =
indices ? static_cast<index_t>(indices[batch]) : max_seq_len;
const index_t padded_periods = max_seq_len - num_seq;
// padded part
if (padded_periods > 0 && id < padded_periods) {
const index_t padded_in_offset =
(id + num_seq) * batch_size * other_dim + batch * other_dim;
KERNEL_ASSIGN(out_data[padded_in_offset + j], req,
in_data[padded_in_offset + j]);
}
// unpadded part
if (id < num_seq) {
const index_t in_offset = id * batch_size * other_dim + batch * other_dim;
const index_t out_offset =
numel - (id + 1 + padded_periods) * batch_size * other_dim +
batch * other_dim;
KERNEL_ASSIGN(out_data[out_offset + j], req, in_data[in_offset + j]);
}
}
};
template <typename xpu, typename DType, typename IType>
class SequenceReverseOp : public Operator {
public:
explicit SequenceReverseOp(SequenceReverseParam p) { this->param_ = p; }
void sequence_reverse(const mshadow::Tensor<xpu, 3, DType> &data,
const mshadow::Tensor<xpu, 3, DType> &out,
const OpReqType req, const IType *const indices,
mshadow::Stream<xpu> *const s) {
using namespace mshadow;
using namespace mshadow::expr;
const index_t max_seq_len = data.size(0);
const index_t batch_size = data.size(1);
const index_t other_dim = data.size(2);
const index_t tensor_numel = data.shape_.Size();
MXNET_ASSIGN_REQ_SWITCH(req, req_type, {
mxnet_op::Kernel<ReverseKernel<req_type>, xpu>::Launch(
s, max_seq_len * batch_size * other_dim, out.dptr_, data.dptr_,
max_seq_len, batch_size, other_dim, tensor_numel, indices);
});
}
virtual void Forward(const OpContext &ctx, const std::vector<TBlob> &in_data,
const std::vector<OpReqType> &req,
const std::vector<TBlob> &out_data,
const std::vector<TBlob> &aux_args) {
using namespace mshadow;
using namespace mshadow::expr;
CHECK_EQ(in_data.size(), param_.use_sequence_length ? 2U : 1U);
CHECK_EQ(out_data.size(), 1U);
Stream<xpu> *const s = ctx.get_stream<xpu>();
// Get any size input + output into required form
auto max_seq_len = in_data[seq_reverse::kData].size(0);
auto n = in_data[seq_reverse::kData].size(1);
auto total_size = in_data[seq_reverse::kData].Size();
auto rest_dim = static_cast<int>(total_size / n / max_seq_len);
Shape<3> s3 = Shape3(max_seq_len, n, rest_dim);
Tensor<xpu, 3, DType> data =
in_data[seq_reverse::kData].get_with_shape<xpu, 3, DType>(s3, s);
Tensor<xpu, 3, DType> out =
out_data[seq_reverse::kOut].get_with_shape<xpu, 3, DType>(s3, s);
const IType *const indices =
param_.use_sequence_length
? in_data[seq_reverse::kSequenceLength].dptr<IType>()
: nullptr;
sequence_reverse(data, out, req[seq_reverse::kOut], indices, s);
}
virtual void Backward(const OpContext &ctx,
const std::vector<TBlob> &out_grad,
const std::vector<TBlob> &in_data,
const std::vector<TBlob> &out_data,
const std::vector<OpReqType> &req,
const std::vector<TBlob> &in_grad,
const std::vector<TBlob> &aux_args) {
using namespace mshadow;
using namespace mshadow::expr;
CHECK_EQ(out_grad.size(), 1U);
CHECK_EQ(in_data.size(), param_.use_sequence_length ? 2U : 1U);
Stream<xpu> *s = ctx.get_stream<xpu>();
// Get any size input + output into required form
auto max_seq_len = in_grad[seq_reverse::kData].size(0);
auto n = in_grad[seq_reverse::kData].size(1);
auto total_size = in_grad[seq_reverse::kData].Size();
auto rest_dim = static_cast<int>(total_size / n / max_seq_len);
Shape<3> s3 = Shape3(max_seq_len, n, rest_dim);
Tensor<xpu, 3, DType> data_grad =
in_grad[seq_reverse::kData].get_with_shape<xpu, 3, DType>(s3, s);
Tensor<xpu, 3, DType> output_grad =
out_grad[seq_reverse::kOut].get_with_shape<xpu, 3, DType>(s3, s);
const IType *const indices =
param_.use_sequence_length
? in_data[seq_reverse::kSequenceLength].dptr<IType>()
: nullptr;
sequence_reverse(output_grad, data_grad, req[seq_reverse::kData], indices,
s);
}
private:
SequenceReverseParam param_;
}; // class SequenceReverseOp
template <typename xpu>
Operator *CreateOp(SequenceReverseParam param, int dtype, int itype);
#if DMLC_USE_CXX11
class SequenceReverseProp : public OperatorProperty {
public:
int NumVisibleOutputs() const override { return 1; }
int NumOutputs() const override { return 1; }
std::vector<std::string> ListArguments() const override {
if (param_.use_sequence_length)
return {"data", "sequence_length"};
else
return {"data"};
}
std::vector<std::string> ListOutputs() const override { return {"output"}; }
void Init(const std::vector<std::pair<std::string, std::string> > &kwargs)
override {
param_.Init(kwargs);
}
std::map<std::string, std::string> GetParams() const override {
return param_.__DICT__();
}
bool InferShape(mxnet::ShapeVector *in_shape, mxnet::ShapeVector *out_shape,
mxnet::ShapeVector *aux_shape) const override {
using namespace mshadow;
CHECK_EQ(in_shape->size(), param_.use_sequence_length ? 2U : 1U)
<< "Input:[data, sequence_length]";
CHECK_EQ(param_.axis, 0) << "Current implementation expects axis to be 0.";
const mxnet::TShape &dshape = (*in_shape)[seq_reverse::kData];
CHECK_GT(dshape.ndim(), 1U)
<< "The data array must be of rank 2 or greater.";
// seq length vector is same as batch size
if (param_.use_sequence_length)
SHAPE_ASSIGN_CHECK(*in_shape, seq_reverse::kSequenceLength,
Shape1(dshape[1]));
const mxnet::TShape &oshape = dshape;
out_shape->clear();
out_shape->push_back(oshape);
return true;
}
bool InferType(std::vector<int> *in_type, std::vector<int> *out_type,
std::vector<int> *aux_type) const override {
CHECK_GE(in_type->size(), param_.use_sequence_length ? 2U : 1U);
int dtype = (*in_type)[0];
CHECK_NE(dtype, -1) << "First input must have specified type";
for (size_t i = 0; i < in_type->size(); ++i) {
if ((*in_type)[i] == -1) {
(*in_type)[i] = dtype;
}
}
out_type->clear();
out_type->push_back(dtype);
return true;
}
OperatorProperty *Copy() const override {
auto ptr = new SequenceReverseProp();
ptr->param_ = param_;
return ptr;
}
std::string TypeString() const override { return "SequenceReverse"; }
std::vector<int> DeclareBackwardDependency(
const std::vector<int> &out_grad, const std::vector<int> &in_data,
const std::vector<int> &out_data) const override {
if (param_.use_sequence_length)
return {out_grad[seq_reverse::kOut],
in_data[seq_reverse::kSequenceLength]};
else
return {out_grad[seq_reverse::kOut]};
}
std::vector<ResourceRequest> BackwardResource(
const mxnet::ShapeVector &in_shape) const override {
return {ResourceRequest::kTempSpace};
}
Operator *CreateOperator(Context ctx) const override {
LOG(FATAL) << "Not Implemented.";
return NULL;
}
Operator *CreateOperatorEx(Context ctx, mxnet::ShapeVector *in_shape,
std::vector<int> *in_type) const override;
private:
SequenceReverseParam param_;
}; // class SequenceReverseProp
#endif // DMLC_USE_CXX11
} // namespace op
} // namespace mxnet
#endif // MXNET_OPERATOR_SEQUENCE_REVERSE_INL_H_