| /* |
| * Licensed to the Apache Software Foundation (ASF) under one |
| * or more contributor license agreements. See the NOTICE file |
| * distributed with this work for additional information |
| * regarding copyright ownership. The ASF licenses this file |
| * to you under the Apache License, Version 2.0 (the |
| * "License"); you may not use this file except in compliance |
| * with the License. You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, |
| * software distributed under the License is distributed on an |
| * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| * KIND, either express or implied. See the License for the |
| * specific language governing permissions and limitations |
| * under the License. |
| */ |
| |
| /*! |
| * Copyright (c) 2016 by Contributors |
| * \file wl_sequence_mask-inl.h |
| * \brief |
| * \author Sebastian Bodenstien |
| */ |
| |
| #ifndef MXNET_OPERATOR_SEQUENCE_MASK_INL_H_ |
| #define MXNET_OPERATOR_SEQUENCE_MASK_INL_H_ |
| |
| #include <dmlc/logging.h> |
| #include <dmlc/parameter.h> |
| #include <mxnet/operator.h> |
| #include <algorithm> |
| #include <map> |
| #include <string> |
| #include <utility> |
| #include <vector> |
| #include "./mshadow_op.h" |
| #include "./operator_common.h" |
| |
| namespace mxnet { |
| namespace op { |
| |
| namespace seq_mask { |
| enum SequenceMaskOpInputs { kData, kSequenceLength }; |
| enum SequenceMaskOpOutputs { kOut }; |
| enum SequenceMaskOpBackResource { kTempSpace }; |
| } |
| |
| struct SequenceMaskParam : public dmlc::Parameter<SequenceMaskParam> { |
| bool use_sequence_length; |
| float value; |
| int axis; |
| DMLC_DECLARE_PARAMETER(SequenceMaskParam) { |
| DMLC_DECLARE_FIELD(use_sequence_length) |
| .set_default(false) |
| .describe( |
| "If set to true, this layer takes in an extra input parameter " |
| "`sequence_length` " |
| "to specify variable length sequence"); |
| DMLC_DECLARE_FIELD(value).set_default(0.).describe( |
| "The value to be used as a mask."); |
| DMLC_DECLARE_FIELD(axis).set_default(0).describe( |
| "The sequence axis. Only values of 0 and 1 are currently supported."); |
| } |
| }; |
| |
| template<typename DType, typename IType> |
| void SequenceMaskExec(const mshadow::Tensor<cpu, 3, DType> &data, |
| const mshadow::Tensor<cpu, 1, IType> &indices, |
| const OpReqType req, mshadow::Stream<cpu> *const s, |
| int axis, DType val); |
| #ifdef __CUDACC__ |
| template<typename DType, typename IType> |
| void SequenceMaskExec(const mshadow::Tensor<gpu, 3, DType> &data, |
| const mshadow::Tensor<gpu, 1, IType> &indices, |
| const OpReqType req, mshadow::Stream<gpu> *const s, |
| int axis, DType val); |
| #endif |
| |
| template <typename xpu, typename DType, typename IType> |
| class SequenceMaskOp : public Operator { |
| public: |
| explicit SequenceMaskOp(SequenceMaskParam p) { this->param_ = p; } |
| |
| virtual void Forward(const OpContext &ctx, const std::vector<TBlob> &in_data, |
| const std::vector<OpReqType> &req, |
| const std::vector<TBlob> &out_data, |
| const std::vector<TBlob> &aux_args) { |
| using namespace mshadow; |
| using namespace mshadow::expr; |
| CHECK_EQ(in_data.size(), param_.use_sequence_length ? 2U : 1U); |
| CHECK_EQ(out_data.size(), 1U); |
| Stream<xpu> *s = ctx.get_stream<xpu>(); |
| |
| // Get any size input + output into required form |
| auto d0 = in_data[seq_mask::kData].size(0); |
| auto d1 = in_data[seq_mask::kData].size(1); |
| auto dsize = in_data[seq_mask::kData].Size(); |
| auto rest_size = dsize / (d0 * d1); |
| |
| Shape<3> s3 = Shape3(d0, d1, rest_size); |
| Tensor<xpu, 3, DType> data = |
| in_data[seq_mask::kData].get_with_shape<xpu, 3, DType>(s3, s); |
| Tensor<xpu, 3, DType> out = |
| out_data[seq_mask::kOut].get_with_shape<xpu, 3, DType>(s3, s); |
| // Actual implementation of masking |
| Assign(out, req[seq_mask::kOut], F<mshadow_op::identity>(data)); |
| if (param_.use_sequence_length) { |
| Tensor<xpu, 1, IType> indices = |
| in_data[seq_mask::kSequenceLength].get<xpu, 1, IType>(s); |
| SequenceMaskExec<DType, IType>(out, indices, req[seq_mask::kOut], s, |
| param_.axis, static_cast<DType>(param_.value)); |
| } |
| } |
| |
| virtual void Backward(const OpContext &ctx, |
| const std::vector<TBlob> &out_grad, |
| const std::vector<TBlob> &in_data, |
| const std::vector<TBlob> &out_data, |
| const std::vector<OpReqType> &req, |
| const std::vector<TBlob> &in_grad, |
| const std::vector<TBlob> &aux_args) { |
| using namespace mshadow; |
| using namespace mshadow::expr; |
| CHECK_EQ(out_grad.size(), 1U); |
| CHECK_EQ(in_data.size(), param_.use_sequence_length ? 2U : 1U); |
| Stream<xpu> *s = ctx.get_stream<xpu>(); |
| |
| // Get any size input + output into required form |
| auto d0 = in_grad[seq_mask::kData].size(0); |
| auto d1 = in_grad[seq_mask::kData].size(1); |
| auto dsize = in_grad[seq_mask::kData].Size(); |
| auto rest_size = dsize / (d0 * d1); |
| |
| Shape<3> s3 = Shape3(d0, d1, rest_size); |
| Tensor<xpu, 3, DType> data_g = |
| in_grad[seq_mask::kData].get_with_shape<xpu, 3, DType>(s3, s); |
| Tensor<xpu, 3, DType> out_g = |
| out_grad[seq_mask::kOut].get_with_shape<xpu, 3, DType>(s3, s); |
| |
| // Actual implementation of masking |
| if (req[seq_mask::kData] == kNullOp) return; |
| if (!param_.use_sequence_length) { |
| Assign(data_g, req[seq_mask::kData], F<mshadow_op::identity>(out_g)); |
| } else { |
| Tensor<xpu, 1, IType> indices = |
| in_data[seq_mask::kSequenceLength].get<xpu, 1, IType>(s); |
| if (req[seq_mask::kData] == kAddTo) { |
| Tensor<xpu, 3, DType> out_g_temp = |
| ctx.requested[seq_mask::kTempSpace].get_space_typed<xpu, 3, DType>( |
| s3, s); |
| out_g_temp = F<mshadow_op::identity>(out_g); |
| out_g = out_g_temp; |
| SequenceMaskExec<DType, IType>(out_g, indices, kWriteInplace, s, param_.axis, DType(0.)); |
| Assign(data_g, kAddTo, F<mshadow_op::identity>(out_g)); |
| } else { |
| Assign(data_g, req[seq_mask::kData], F<mshadow_op::identity>(out_g)); |
| SequenceMaskExec<DType, IType>( |
| data_g, indices, req[seq_mask::kData], s, param_.axis, DType(0.)); |
| } |
| } |
| } |
| |
| private: |
| SequenceMaskParam param_; |
| }; // class SequenceMaskOp |
| |
| template <typename xpu> |
| Operator *CreateOp(SequenceMaskParam param, int dtype, int itype); |
| |
| #if DMLC_USE_CXX11 |
| class SequenceMaskProp : public OperatorProperty { |
| public: |
| int NumVisibleOutputs() const override { return 1; } |
| |
| int NumOutputs() const override { return 1; } |
| |
| std::vector<std::string> ListArguments() const override { |
| if (param_.use_sequence_length) |
| return {"data", "sequence_length"}; |
| else |
| return {"data"}; |
| } |
| |
| std::vector<std::string> ListOutputs() const override { return {"output"}; } |
| |
| void Init(const std::vector<std::pair<std::string, std::string> > &kwargs) |
| override { |
| param_.Init(kwargs); |
| } |
| |
| std::map<std::string, std::string> GetParams() const override { |
| return param_.__DICT__(); |
| } |
| |
| bool InferShape(mxnet::ShapeVector *in_shape, mxnet::ShapeVector *out_shape, |
| mxnet::ShapeVector *aux_shape) const override { |
| using namespace mshadow; |
| CHECK_EQ(in_shape->size(), param_.use_sequence_length ? 2U : 1U) |
| << "Input:[data, sequence_length]"; |
| |
| const mxnet::TShape &dshape = (*in_shape)[seq_mask::kData]; |
| CHECK_GT(dshape.ndim(), 1U) |
| << "The data array must be of rank 2 or greater."; |
| CHECK((param_.axis == 0) || (param_.axis == 1)) |
| << "Current implementation expects axis to be 0 or 1."; |
| |
| // seq length vector is same as batch size |
| int sbatch = param_.axis ? dshape[0] : dshape[1]; |
| if (param_.use_sequence_length) |
| SHAPE_ASSIGN_CHECK(*in_shape, seq_mask::kSequenceLength, Shape1(sbatch)); |
| |
| const mxnet::TShape &oshape = dshape; |
| out_shape->clear(); |
| out_shape->push_back(oshape); |
| return true; |
| } |
| |
| bool InferType(std::vector<int> *in_type, std::vector<int> *out_type, |
| std::vector<int> *aux_type) const override { |
| CHECK_GE(in_type->size(), param_.use_sequence_length ? 2U : 1U); |
| int dtype = (*in_type)[0]; |
| CHECK_NE(dtype, -1) << "First input must have specified type"; |
| for (size_t i = 0; i < in_type->size(); ++i) { |
| if ((*in_type)[i] == -1) { |
| (*in_type)[i] = dtype; |
| } |
| } |
| out_type->clear(); |
| out_type->push_back(dtype); |
| return true; |
| } |
| |
| OperatorProperty *Copy() const override { |
| auto ptr = new SequenceMaskProp(); |
| ptr->param_ = param_; |
| return ptr; |
| } |
| |
| std::string TypeString() const override { return "SequenceMask"; } |
| |
| std::vector<int> DeclareBackwardDependency( |
| const std::vector<int> &out_grad, const std::vector<int> &in_data, |
| const std::vector<int> &out_data) const override { |
| if (param_.use_sequence_length) |
| return {out_grad[seq_mask::kOut], in_data[seq_mask::kSequenceLength]}; |
| else |
| return {out_grad[seq_mask::kOut]}; |
| } |
| |
| std::vector<ResourceRequest> BackwardResource( |
| const mxnet::ShapeVector &in_shape) const override { |
| return {ResourceRequest::kTempSpace}; |
| } |
| |
| std::vector<std::pair<int, void *> > BackwardInplaceOption( |
| const std::vector<int> &out_grad, const std::vector<int> &in_data, |
| const std::vector<int> &out_data, |
| const std::vector<void *> &in_grad) const override { |
| return {{out_grad[seq_mask::kOut], in_grad[seq_mask::kData]}}; |
| } |
| |
| std::vector<std::pair<int, void *> > ForwardInplaceOption( |
| const std::vector<int> &in_data, |
| const std::vector<void *> &out_data) const override { |
| return {{in_data[seq_mask::kData], out_data[seq_mask::kOut]}}; |
| } |
| |
| Operator *CreateOperator(Context ctx) const override { |
| LOG(FATAL) << "Not Implemented."; |
| return NULL; |
| } |
| |
| Operator *CreateOperatorEx(Context ctx, mxnet::ShapeVector *in_shape, |
| std::vector<int> *in_type) const override; |
| |
| private: |
| SequenceMaskParam param_; |
| }; // class SequenceMaskProp |
| #endif // DMLC_USE_CXX11 |
| } // namespace op |
| } // namespace mxnet |
| #endif // MXNET_OPERATOR_SEQUENCE_MASK_INL_H_ |