| /* |
| * Licensed to the Apache Software Foundation (ASF) under one |
| * or more contributor license agreements. See the NOTICE file |
| * distributed with this work for additional information |
| * regarding copyright ownership. The ASF licenses this file |
| * to you under the Apache License, Version 2.0 (the |
| * "License"); you may not use this file except in compliance |
| * with the License. You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, |
| * software distributed under the License is distributed on an |
| * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| * KIND, either express or implied. See the License for the |
| * specific language governing permissions and limitations |
| * under the License. |
| */ |
| |
| /*! |
| * Copyright (c) 2017 by Contributors |
| * \file dequantize.cc |
| * \brief |
| */ |
| #include "./dequantize-inl.h" |
| #if MXNET_USE_MKLDNN == 1 |
| #include "./mkldnn/mkldnn_dequantize-inl.h" |
| #endif |
| |
| namespace mxnet { |
| namespace op { |
| DMLC_REGISTER_PARAMETER(DequantizeParam); |
| |
| bool DequantizeStorageType(const nnvm::NodeAttrs& attrs, |
| const int dev_mask, |
| DispatchMode* dispatch_mode, |
| std::vector<int> *in_attrs, |
| std::vector<int> *out_attrs) { |
| *dispatch_mode = DispatchMode::kFCompute; |
| #if MXNET_USE_MKLDNN == 1 |
| if (dev_mask == mshadow::cpu::kDevMask) { |
| *dispatch_mode = DispatchMode::kFComputeEx; |
| } |
| #endif |
| (*out_attrs)[0] = kDefaultStorage; |
| (*out_attrs)[1] = kDefaultStorage; |
| (*out_attrs)[2] = kDefaultStorage; |
| return true; |
| } |
| |
| static OpStatePtr CreateDequantizeState(const nnvm::NodeAttrs &attrs, Context ctx, |
| const std::vector<TShape> &in_shapes, |
| const std::vector<int> &in_types) { |
| OpStatePtr state; |
| if (ctx.dev_type == kGPU) { |
| state = OpStatePtr::Create<DequantizeOperator<gpu>>(attrs); |
| } else { |
| #if MXNET_USE_MKLDNN == 1 |
| state = OpStatePtr::Create<SgMKLDNNDequantizeOperator>(attrs); |
| #else |
| state = OpStatePtr::Create<DequantizeOperator<cpu>>(attrs); |
| #endif |
| } |
| return state; |
| } |
| |
| NNVM_REGISTER_OP(_contrib_dequantize) |
| .describe(R"code(Dequantize the input tensor into a float tensor. |
| min_range and max_range are scalar floats that specify the range for |
| the output data. |
| |
| When input data type is `uint8`, the output is calculated using the following equation: |
| |
| `out[i] = in[i] * (max_range - min_range) / 255.0`, |
| |
| When input data type is `int8`, the output is calculate using the following equation |
| by keep zero centered for the quantized value: |
| |
| `out[i] = in[i] * MaxAbs(min_range, max_range) / 127.0`, |
| |
| .. Note:: |
| This operator only supports forward propogation. DO NOT use it in training. |
| )code" ADD_FILELINE) |
| .set_attr_parser(ParamParser<DequantizeParam>) |
| .set_num_inputs(3) |
| .set_num_outputs(1) |
| .set_attr<nnvm::FListInputNames>("FListInputNames", |
| [](const NodeAttrs& attrs) { |
| return std::vector<std::string>{"data", "min_range", "max_range"}; |
| }) |
| .set_attr<mxnet::FInferShape>("FInferShape", DequantizeShape) |
| .set_attr<nnvm::FInferType>("FInferType", DequantizeType) |
| .set_attr<FInferStorageType>("FInferStorageType", DequantizeStorageType) |
| // TODO(Xinyu): a temp solution to enable GluonCV INT8 flow, |
| // will be reverted after the improvement of CachedOP is done. |
| .set_attr<nnvm::FGradient>("FGradient", MakeZeroGradNodes) |
| .set_attr<FCreateOpState>("FCreateOpState", CreateDequantizeState) |
| #if MXNET_USE_MKLDNN == 1 |
| .set_attr<bool>("TIsMKLDNN", true) |
| .set_attr<FStatefulComputeEx>("FStatefulComputeEx<cpu>", SgMKLDNNDequantizeForward) |
| #endif |
| .set_attr<FStatefulCompute>("FStatefulCompute<cpu>", DequantizeForward<cpu>) |
| .add_argument("data", "NDArray-or-Symbol", "A ndarray/symbol of type `uint8`") |
| .add_argument("min_range", "NDArray-or-Symbol", "The minimum scalar value " |
| "possibly produced for the input in float32") |
| .add_argument("max_range", "NDArray-or-Symbol", "The maximum scalar value " |
| "possibly produced for the input in float32") |
| .add_arguments(DequantizeParam::__FIELDS__()); |
| |
| } // namespace op |
| } // namespace mxnet |