blob: 7501c7643b8ea16653749fa125b6839825d92521 [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*!
* Copyright (c) 2019 by Contributors
* \file np_window_op.h
* \brief CPU Implementation of unary op hanning, hamming, blackman window.
*/
#ifndef MXNET_OPERATOR_NUMPY_NP_WINDOW_OP_H_
#define MXNET_OPERATOR_NUMPY_NP_WINDOW_OP_H_
#include <string>
#include <vector>
#include "../tensor/init_op.h"
namespace mxnet {
namespace op {
#ifdef __CUDA_ARCH__
__constant__ const float PI = 3.14159265358979323846;
#else
const float PI = 3.14159265358979323846;
using std::isnan;
#endif
struct NumpyWindowsParam : public dmlc::Parameter<NumpyWindowsParam> {
dmlc::optional<nnvm::dim_t> M;
std::string ctx;
int dtype;
DMLC_DECLARE_PARAMETER(NumpyWindowsParam) {
DMLC_DECLARE_FIELD(M)
.set_default(dmlc::optional<nnvm::dim_t>())
.describe("Number of points in the output window. "
"If zero or less, an empty array is returned.");
DMLC_DECLARE_FIELD(ctx)
.set_default("")
.describe("Context of output, in format [cpu|gpu|cpu_pinned](n)."
"Only used for imperative calls.");
DMLC_DECLARE_FIELD(dtype)
.set_default(mshadow::kFloat32)
MXNET_ADD_ALL_TYPES
.describe("Data-type of the returned array.");
}
};
struct hanning_fwd {
template<typename DType>
MSHADOW_XINLINE static void Map(index_t i, index_t M, int req, DType* out) {
if (M == 1) {
KERNEL_ASSIGN(out[i], req, static_cast<int64_t>(1));
} else {
KERNEL_ASSIGN(out[i], req, DType(0.5) - DType(0.5) * math::cos(DType(2 * PI * i / (M - 1))));
}
}
};
struct hamming_fwd {
template<typename DType>
MSHADOW_XINLINE static void Map(index_t i, index_t M, int req, DType* out) {
if (M == 1) {
KERNEL_ASSIGN(out[i], req, static_cast<int64_t>(1));
} else {
KERNEL_ASSIGN(out[i], req,
DType(0.54) - DType(0.46) * math::cos(DType(2 * PI * i / (M - 1))));
}
}
};
struct blackman_fwd {
template<typename DType>
MSHADOW_XINLINE static void Map(index_t i, index_t M, int req, DType* out) {
if (M == 1) {
KERNEL_ASSIGN(out[i], req, static_cast<int64_t>(1));
} else {
KERNEL_ASSIGN(out[i], req, DType(0.42) - DType(0.5) * math::cos(DType(2 * PI * i /(M - 1))) +
DType(0.08) * math::cos(DType(4 * PI * i /(M - 1))));
}
}
};
template<typename xpu, int window_select>
void NumpyWindowCompute(const nnvm::NodeAttrs& attrs,
const OpContext& ctx,
const std::vector<mxnet::TBlob>& inputs,
const std::vector<OpReqType>& req,
const std::vector<TBlob>& outputs) {
using namespace mxnet_op;
mshadow::Stream<xpu> *s = ctx.get_stream<xpu>();
const NumpyWindowsParam& param = nnvm::get<NumpyWindowsParam>(attrs.parsed);
if (param.M.has_value() && param.M.value() <= 0) return;
MSHADOW_TYPE_SWITCH(outputs[0].type_flag_, DType, {
if (window_select == 0) {
Kernel<hanning_fwd, xpu>::Launch(s, outputs[0].Size(), static_cast<int>(param.M.value()),
req[0], outputs[0].dptr<DType>());
} else if (window_select == 1) {
Kernel<hamming_fwd, xpu>::Launch(s, outputs[0].Size(), static_cast<int>(param.M.value()),
req[0], outputs[0].dptr<DType>());
} else if (window_select == 2) {
Kernel<blackman_fwd, xpu>::Launch(s, outputs[0].Size(), static_cast<int>(param.M.value()),
req[0], outputs[0].dptr<DType>());
} else {
LOG(FATAL) << "window_select must be (0, 1, 2)";
}
});
}
} // namespace op
} // namespace mxnet
#endif // MXNET_OPERATOR_NUMPY_NP_WINDOW_OP_H_