blob: d97ac3040384dad93dc51348a18e19e204e73b83 [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*!
* Copyright (c) 2019 by Contributors
* \file np_trace_op.cc
* \brief CPU Implementation of numpy-compatible trace operator
*/
#include "./np_trace_op-inl.h"
namespace mxnet {
namespace op {
inline bool NumpyTraceOpShape(const nnvm::NodeAttrs& attrs,
mxnet::ShapeVector* in_attrs,
mxnet::ShapeVector* out_attrs) {
CHECK_EQ(in_attrs->size(), 1);
CHECK_EQ(out_attrs->size(), 1);
const int ndim((*in_attrs)[0].ndim());
if (ndim < 2) {
return false;
}
std::vector<int> oshape(ndim - 2);
const NumpyTraceParam& param = nnvm::get<NumpyTraceParam>(attrs.parsed);
int x1 = CheckAxis(param.axis1, (*in_attrs)[0].ndim());
int x2 = CheckAxis(param.axis2, (*in_attrs)[0].ndim());
CHECK_NE(x1, x2) << "axis1 and axis2 cannot refer to the the same axis " << x1;
for ( int i = 0, j = 0; i < ndim; ++i ) {
if (i != x1 && i != x2) {
oshape[j++] = (*in_attrs)[0][i];
}
}
mxnet::TShape tshape(oshape.begin(), oshape.end());
SHAPE_ASSIGN_CHECK(*out_attrs, 0, tshape);
return true;
}
DMLC_REGISTER_PARAMETER(NumpyTraceParam);
NNVM_REGISTER_OP(_np_trace)
.describe(R"code(Computes the sum of the diagonal elements of a matrix.
Input is a tensor *A* of dimension *n >= 2*.
If *n=2*, we sum the diagonal elements. The result has shape ().
If *n>2*, *trace* is performed separately on the matrix defined by *axis1* and *axis2* for all
inputs (batch mode).
Examples::
// Single matrix reduction
A = [[1.0, 1.0], [1.0, 7.0]]
trace(A) = 8.0
// Batch matrix reduction
A = [[[1.0, 1.0], [1.0, 7.0]], [[3.0, 0], [0, 17.0]]]
trace(A) = [1.0, 18.0]
)code" ADD_FILELINE)
.set_attr_parser(ParamParser<NumpyTraceParam>)
.set_num_inputs(1)
.set_num_outputs(1)
.set_attr<nnvm::FListInputNames>("FListInputNames",
[](const NodeAttrs& attrs) {
return std::vector<std::string>{"data"};
})
.set_attr<mxnet::FInferShape>("FInferShape", NumpyTraceOpShape)
.set_attr<nnvm::FInferType>("FInferType", ElemwiseType<1, 1>)
.set_attr<FCompute>("FCompute<cpu>", NumpyTraceOpForward<cpu>)
.set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseNone{"_backward_np_trace"})
.add_argument("data", "NDArray-or-Symbol", "Input ndarray")
.add_arguments(NumpyTraceParam::__FIELDS__());
NNVM_REGISTER_OP(_backward_np_trace)
.set_attr_parser(ParamParser<NumpyTraceParam>)
.set_num_inputs(1)
.set_num_outputs(1)
.set_attr<nnvm::TIsBackward>("TIsBackward", true)
.set_attr<FCompute>("FCompute<cpu>", NumpyTraceOpBackward<cpu>);
} // namespace op
} // namespace mxnet